- 相關(guān)推薦
大學(xué)數(shù)學(xué)的手抄報(bào)內(nèi)容
在平平淡淡的日常中,說(shuō)到手抄報(bào),大家肯定都不陌生吧,手抄報(bào)具有相當(dāng)強(qiáng)的可塑性和自由性。那么都有哪些類型的手抄報(bào)呢?下面是小編為大家整理的大學(xué)數(shù)學(xué)的手抄報(bào)內(nèi)容,僅供參考,歡迎大家閱讀。
大學(xué)數(shù)學(xué)的手抄報(bào)內(nèi)容
定義
亞里士多德把數(shù)學(xué)定義為“數(shù)量數(shù)學(xué)”,這個(gè)定義直到18世紀(jì)。從19世紀(jì)開始,數(shù)學(xué)研究越來(lái)越嚴(yán)格,開始涉及與數(shù)量和量度無(wú)明確關(guān)系的群論和投影幾何等抽象主題,數(shù)學(xué)家和哲學(xué)家開始提出各種新的定義。這些定義中的一些強(qiáng)調(diào)了大量數(shù)學(xué)的演繹性質(zhì),一些強(qiáng)調(diào)了它的抽象性,一些強(qiáng)調(diào)數(shù)學(xué)中的某些話題。即使在專業(yè)人士中,對(duì)數(shù)學(xué)的定義也沒有達(dá)成共識(shí)。數(shù)學(xué)是否是藝術(shù)或科學(xué),甚至沒有一致意見。許多專業(yè)數(shù)學(xué)家對(duì)數(shù)學(xué)的定義不感興趣,或者認(rèn)為它是不可定義的。有些只是說(shuō),“數(shù)學(xué)是數(shù)學(xué)家做的!
數(shù)學(xué)定義的三個(gè)主要類型被稱為邏輯學(xué)家,直覺主義者和形式主義者,每個(gè)都反映了不同的哲學(xué)思想學(xué)派。都有嚴(yán)重的問(wèn)題,沒有人普遍接受,沒有和解似乎是可行的。
數(shù)學(xué)邏輯的早期定義是本杰明·皮爾士(Benjamin Peirce)的“得出必要結(jié)論的科學(xué)”(1870)。在Principia Mathematica,Bertrand Russell和Alfred North Whitehead提出了被稱為邏輯主義的哲學(xué)程序,并試圖證明所有的數(shù)學(xué)概念,陳述和原則都可以用符號(hào)邏輯來(lái)定義和證明。數(shù)學(xué)的邏輯學(xué)定義是羅素的“所有數(shù)學(xué)是符號(hào)邏輯”(1903)。
直覺主義定義,從數(shù)學(xué)家L. E. J. Brouwer,識(shí)別具有某些精神現(xiàn)象的數(shù)學(xué)。直覺主義定義的一個(gè)例子是“數(shù)學(xué)是一個(gè)接著一個(gè)進(jìn)行構(gòu)造的心理活動(dòng)”。直觀主義的特點(diǎn)是它拒絕根據(jù)其他定義認(rèn)為有效的一些數(shù)學(xué)思想。特別是,雖然其他數(shù)學(xué)哲學(xué)允許可以被證明存在的對(duì)象,即使它們不能被構(gòu)造,但直覺主義只允許可以實(shí)際構(gòu)建的數(shù)學(xué)對(duì)象。
正式主義定義用其符號(hào)和操作規(guī)則來(lái)確定數(shù)學(xué)。 Haskell Curry將數(shù)學(xué)簡(jiǎn)單地定義為“正式系統(tǒng)的科學(xué)”。正式系統(tǒng)是一組符號(hào),或令牌,還有一些規(guī)則告訴令牌如何組合成公式。在正式系統(tǒng)中,公理一詞具有特殊意義,與“不言而喻的真理”的普通含義不同。在正式系統(tǒng)中,公理是包含在給定的正式系統(tǒng)中的令牌的組合,而不需要使用系統(tǒng)的規(guī)則導(dǎo)出。
結(jié)構(gòu)
許多諸如數(shù)、函數(shù)、幾何等的數(shù)學(xué)對(duì)象反應(yīng)出了定義在其中連續(xù)運(yùn)算或關(guān)系的內(nèi)部結(jié)構(gòu)。數(shù)學(xué)就研究這些結(jié)構(gòu)的性質(zhì),例如:數(shù)論研究整數(shù)在算數(shù)運(yùn)算下如何表示。此外,不同結(jié)構(gòu)卻有著相似的性質(zhì)的事情時(shí)常發(fā)生,這使得通過(guò)進(jìn)一步的抽象,然后通過(guò)對(duì)一類結(jié)構(gòu)用公理描述他們的狀態(tài)變得可能,需要研究的就是在所有的結(jié)構(gòu)里找出滿足這些公理的結(jié)構(gòu)。
因此,我們可以學(xué)習(xí)群、環(huán)、域和其他的抽象系統(tǒng)。把這些研究(通過(guò)由代數(shù)運(yùn)算定義的結(jié)構(gòu))可以組成抽象代數(shù)的領(lǐng)域。由于抽象代數(shù)具有極大的通用性,它時(shí)?梢员粦(yīng)用于一些似乎不相關(guān)的問(wèn)題,例如一些古老的尺規(guī)作圖的問(wèn)題終于使用了伽羅瓦理論解決了,它涉及到域論和群論。代數(shù)理論的另外一個(gè)例子是線性代數(shù),它對(duì)其元素具有數(shù)量和方向性的向量空間做出了一般性的研究。這些現(xiàn)象表明了原來(lái)被認(rèn)為不相關(guān)的幾何和代數(shù)實(shí)際上具有強(qiáng)力的相關(guān)性。組合數(shù)學(xué)研究列舉滿足給定結(jié)構(gòu)的數(shù)對(duì)象的方法。
空間
空間的研究源自于歐式幾何。三角學(xué)則結(jié)合了空間及數(shù),且包含有非常著名的勾股定理、三角函數(shù)等。現(xiàn)今對(duì)空間的研究更推廣到了更高維的幾何、非歐幾何,以及拓?fù)鋵W(xué)、圖論。
數(shù)和空間在解析幾何、微分幾何和代數(shù)幾何中都有著很重要的角色。在微分幾何中有著纖維叢及流形上的計(jì)算等概念。在代數(shù)幾何中有著如多項(xiàng)式方程的解集等幾何對(duì)象的`描述,結(jié)合了數(shù)和空間的概念;亦有著拓?fù)淙旱难芯,結(jié)合了結(jié)構(gòu)與空間。李群被用來(lái)研究空間、結(jié)構(gòu)及變化。
邏輯
主條目:數(shù)理邏輯
數(shù)學(xué)邏輯專注在將數(shù)學(xué)置于一堅(jiān)固的公理架構(gòu)上,并研究此一架構(gòu)的成果。就其本身而言,其為哥德爾第二不完備定理的產(chǎn)地,而這或許是邏輯中最廣為流傳的成果.現(xiàn)代邏輯被分成遞歸論、模型論和證明論,且和理論計(jì)算機(jī)科學(xué)有著密切的關(guān)聯(lián)性。
符號(hào)
主條目:數(shù)學(xué)符號(hào)
也許中國(guó)古代的算籌是世界上最早使用的符號(hào)之一,起源于商代的占卜。
我們現(xiàn)今所使用的大部分?jǐn)?shù)學(xué)符號(hào)都是到了16世紀(jì)后才被發(fā)明出來(lái)的。在此之前,數(shù)學(xué)是用文字書寫出來(lái),這是個(gè)會(huì)限制住數(shù)學(xué)發(fā)展的刻苦程序。現(xiàn)今的符號(hào)使得數(shù)學(xué)對(duì)于人們而言更便于操作,但初學(xué)者卻常對(duì)此感到怯步。它被極度的壓縮:少量的符號(hào)包含著大量的訊息。如同音樂(lè)符號(hào)一般,現(xiàn)今的數(shù)學(xué)符號(hào)有明確的語(yǔ)法和難以以其他方法書寫的訊息編碼。
【大學(xué)數(shù)學(xué)的手抄報(bào)內(nèi)容】相關(guān)文章:
數(shù)學(xué)手抄報(bào)內(nèi)容02-10
關(guān)于數(shù)學(xué)手抄報(bào)內(nèi)容06-27
簡(jiǎn)單的數(shù)學(xué)手抄報(bào)內(nèi)容06-19
數(shù)學(xué)手抄報(bào)內(nèi)容大全05-05
關(guān)于數(shù)學(xué)的手抄報(bào)內(nèi)容推薦11-01
數(shù)學(xué)各種知識(shí)的手抄報(bào)內(nèi)容02-23
精美漂亮的數(shù)學(xué)手抄報(bào)內(nèi)容09-05
數(shù)學(xué)知識(shí)手抄報(bào)內(nèi)容10-28