2021中考知識點歸納數(shù)學(集合15篇)
在我們平凡的學生生涯里,是不是聽到知識點,就立刻清醒了?知識點就是掌握某個問題/知識的學習要點。為了幫助大家掌握重要知識點,以下是小編精心整理的2021中考知識點歸納數(shù)學,歡迎閱讀與收藏。
2021中考知識點歸納數(shù)學1
【知識點一】實數(shù)的分類
1、按定義分類: 2.按性質符號分類:
注:0既不是正數(shù)也不是負數(shù).
【知識點二】實數(shù)的相關概念
1.相反數(shù)
(1)代數(shù)意義:只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù).0的相反數(shù)是0.
(2)幾何意義:在數(shù)軸上原點的兩側,與原點距離相等的兩個點表示的兩個數(shù)互為相反數(shù),或數(shù)軸上,互為相反數(shù)的兩個數(shù)所對應的點關于原點對稱.
(3)互為相反數(shù)的兩個數(shù)之和等于0.a、b互為相反數(shù) a+b=0.
2.絕對值 |a|0.
3.倒數(shù) (1)0沒有倒數(shù) (2)乘積是1的兩個數(shù)互為倒數(shù).a、b互為倒數(shù) .
4.平方根
(1)如果一個數(shù)的平方等于a,這個數(shù)就叫做a的平方根.一個正數(shù)有兩個平方根,它們互為相反數(shù);0有一個平方根,它是0本身;負數(shù)沒有平方根.a(a0)的平方根記作.
(2)一個正數(shù)a的正的平方根,叫做a的算術平方根.a(a0)的算術平方根記作 .
5.立方根
如果x3=a,那么x叫做a的立方根.一個正數(shù)有一個正的立方根;一個負數(shù)有一個負的立方根;零的立方根是零.
【知識點三】實數(shù)與數(shù)軸
數(shù)軸定義: 規(guī)定了原點,正方向和單位長度的直線叫做數(shù)軸,數(shù)軸的三要素缺一不可.
【知識點四】實數(shù)大小的比較
1.對于數(shù)軸上的任意兩個點,靠右邊的點所表示的數(shù)較大.
2.正數(shù)都大于0,負數(shù)都小于0,兩個正數(shù),絕對值較大的那個正數(shù)大;兩個負數(shù);絕對值大的反而小.
3.無理數(shù)的比較大。
【知識點五】實數(shù)的運算
1.加法
同號兩數(shù)相加,取相同的符號,并把絕對值相加;絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;互為相反數(shù)的兩個數(shù)相加得0;一個數(shù)同0相加,仍得這個數(shù).
2.減法:減去一個數(shù)等于加上這個數(shù)的相反數(shù).
3.乘法
幾個非零實數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定,當負因數(shù)有偶數(shù)個時,積為正;當負因數(shù)有奇數(shù)個時,積為負.幾個數(shù)相乘,有一個因數(shù)為0,積就為0.
4.除法
除以一個數(shù),等于乘上這個數(shù)的倒數(shù).兩個數(shù)相除,同號得正,異號得負,并把絕對值相除.0除以任何一個不等于0的數(shù)都得0.
5.乘方與開方
(1)an所表示的意義是n個a相乘,正數(shù)的任何次冪是正數(shù),負數(shù)的偶次冪是正數(shù),負數(shù)的奇次冪是負數(shù).
(2)正數(shù)和0可以開平方,負數(shù)不能開平方;正數(shù)、負數(shù)和0都可以開立方.
(3)零指數(shù)與負指數(shù)
【知識點六】有效數(shù)字和科學記數(shù)法
1.有效數(shù)字:
一個近似數(shù),從左邊第一個不是0的數(shù)字起,到精確到的數(shù)位為止,所有的數(shù)字,都叫做這個近似數(shù)的有效數(shù)字.
2.科學記數(shù)法:
把一個數(shù)用 (110,n為整數(shù))的形式記數(shù)的方法叫科學記數(shù)法.
有了上文梳理的人教版數(shù)學期中考試知識點匯總(2),相信大家對考試充滿了信心,同時預祝大家考試取得好成績。
2021中考知識點歸納數(shù)學2
1、兩組對邊平行的四邊形是平行四邊形。
2、性質:
(1)平行四邊形的對邊相等且平行;
(2)平行四邊形的對角相等,鄰角互補;
(3)平行四邊形的對角線互相平分。
3、判定:
(1)兩組對邊分別平行的四邊形是平行四邊形:
(2)兩組對邊分別相等的四邊形是平行四邊形;
(3)一組對邊平行且相等的四邊形是平行四邊形;
(4)兩組對角分別相等的四邊形是平行四邊形:
(5)對角線互相平分的四邊形是平行四邊形。
4、對稱性:平行四邊形是中心對稱圖形。
2021中考知識點歸納數(shù)學3
1、反比例函數(shù)的概念
一般地,函數(shù)(k是常數(shù),k0)叫做反比例函數(shù)。反比例函數(shù)的解析式也可以寫成的形式。自變量x的取值范圍是x0的一切實數(shù),函數(shù)的取值范圍也是一切非零實數(shù)。
2、反比例函數(shù)的圖像
反比例函數(shù)的圖像是雙曲線,它有兩個分支,這兩個分支分別位于第一、三象限,或第二、四象限,它們關于原點對稱。由于反比例函數(shù)中自變量x0,函數(shù)y0,所以,它的圖像與x軸、y軸都沒有交點,即雙曲線的兩個分支無限接近坐標軸,但永遠達不到坐標軸。
3、反比例函數(shù)的性質
反比例函數(shù)k的符號k>0k<0圖像yO xyO x性質①x的取值范圍是x0,
y的取值范圍是y0;
②當k>0時,函數(shù)圖像的兩個分支分別
在第一、三象限。在每個象限內,y
隨x的增大而減小。
、賦的取值范圍是x0,
y的取值范圍是y0;
②當k<0時,函數(shù)圖像的兩個分支分別
在第二、四象限。在每個象限內,y
隨x的增大而增大。
4、反比例函數(shù)解析式的確定
確定及誒是的方法仍是待定系數(shù)法。由于在反比例函數(shù)中,只有一個待定系數(shù),因此只需要一對對應值或圖像上的一個點的坐標,即可求出k的值,從而確定其解析式。
5、反比例函數(shù)的幾何意義
設是反比例函數(shù)圖象上任一點,過點P作軸、軸的垂線,垂足為A,則
(1)△OPA的面積.
(2)矩形OAPB的面積。這就是系數(shù)的幾何意義.并且無論P怎樣移動,△OPA的面積和矩形OAPB的面積都保持不變。
矩形PCEF面積=,平行四邊形PDEA面積=
2021中考知識點歸納數(shù)學4
第三章 統(tǒng)計初步
★重點★
內容提要
一、 重要概念
1。總體:考察對象的全體。
2。個體:總體中每一個考察對象。
3。樣本:從總體中抽出的一部分個體。
4。樣本容量:樣本中個體的數(shù)目。
5。眾數(shù):一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù)。
6。中位數(shù):將一組數(shù)據(jù)按大小依次排列,處在最中間位置的一個數(shù)(或最中間位置的兩個數(shù)據(jù)的平均數(shù))
二、 計算方法
1。樣本平均數(shù):⑴ ;⑵若 , ,…, ,則 (a—常數(shù), , ,…,接近較整的常數(shù)a);⑶加權平均數(shù): ;⑷平均數(shù)是刻劃數(shù)據(jù)的集中趨勢(集中位置)的特征數(shù)。通常用樣本平均數(shù)去估計總體平均數(shù),樣本容量越大,估計越準確。
2。樣本方差:⑴ ;⑵若 , ,…, ,則 (a—接近 、 、…、的平均數(shù)的較“整”的常數(shù));若 、 、…、 較“小”較“整”,則 ;⑶樣本方差是刻劃數(shù)據(jù)的離散程度(波動大小)的特征數(shù),當樣本容量較大時,樣本方差非常接近總體方差,通常用樣本方差去估計總體方差。
3。樣本標準差:
2021中考知識點歸納數(shù)學5
一、平行線分線段成比例定理及其推論:
1.定理:三條平行線截兩條直線,所得的對應線段成比例。
2.推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長線)所得的對應線段成比例。
3.推論的逆定理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條線段平行于三角形的第三邊。
二、相似預備定理:
平行于三角形的一邊,并且和其他兩邊相交的直線,截得的三角形的三邊與原三角形三邊對應成比例。
三、相似三角形:
1.定義:對應角相等,對應邊成比例的三角形叫做相似三角形。
2.性質:(1)相似三角形的對應角相等;
(2)相似三角形的對應線段(邊、高、中線、角平分線)成比例;
(3)相似三角形的周長比等于相似比,面積比等于相似比的平方。
說明:①等高三角形的面積比等于底之比,等底三角形的面積比等于高之比;②要注意兩個圖形元素的對應。
3.判定定理:
(1)兩角對應相等,兩三角形相似;
(2)兩邊對應成比例,且夾角相等,兩三角形相似;
(3)三邊對應成比例,兩三角形相似;
(4)如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角對應成比例,那么這兩個直角三角形相似。
2021中考知識點歸納數(shù)學6
橢圓知識:平面內與兩定點F1、F2的距離的和等于常數(shù)2a(2a>|F1F2|)的動點P的軌跡叫做橢圓。
橢圓的第一定義
即:│PF1│+│PF2│=2a
其中兩定點F1、F2叫做橢圓的焦點,兩焦點的距離│F1F2│=2c<2a叫做橢圓的焦距。P 為橢圓的動點。
長軸為 2a; 短軸為 2b。
橢圓的第二定義
平面內到定點F的距離與到定直線的距離之比為常數(shù)e(即橢圓的離心率,e=c/a)的點的集合(定點F不在定直線上,該常數(shù)為小于1的正數(shù)) 其中定點F為橢圓的焦點,定直線稱為橢圓的準線(該定直線的方程是x=±a^2/c[焦點在X軸上];或者y=±a^2/c[焦點在Y軸上])。
橢圓的其他定義
根據(jù)橢圓的一條重要性質,也就是橢圓上的點與橢圓短軸兩端點連線的斜率之積是定值 定值為e^2-1 可以得出:平面內與兩定點的連線的斜率之積是常數(shù)k的動點的軌跡是橢圓,此時k應滿足一定的條件,也就是排除斜率不存在的情況,還有K應滿足<0且不等于-1。
簡單幾何性質
1、范圍
2、對稱性:關于X軸對稱,Y軸對稱,關于原點中心對稱。
3、頂點:(當中心為原點時)(a,0)(-a,0)(0,b)(0,-b)
4、離心率:e=c/a
5、離心率范圍 0
知識歸納:離心率越大橢圓就越扁,越小則越接近于圓。
初中數(shù)學知識點總結:平面直角坐標系
平面直角坐標系
平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
初中數(shù)學知識點:平面直角坐標系的構成
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
初中數(shù)學知識點:點的坐標的性質
點的坐標的性質
建立了平面直角坐標系后,對于坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。
對于平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數(shù)對(a,b)叫做點C的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。
初中數(shù)學知識點:因式分解的一般步驟
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數(shù)范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
初中數(shù)學知識點:因式分解
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④
因式分解與整式乘法的關系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
、俅_定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
、俨粶蕘G字母
、诓粶蕘G常數(shù)項注意查項數(shù)
、垭p重括號化成單括號
④結果按數(shù)單字母單項式多項式順序排列
、菹嗤蚴綄懗蓛绲男问
、奘醉椮撎柗爬ㄌ柾
、呃ㄌ杻韧愴椇喜。
2021中考知識點歸納數(shù)學7
1、熟知直角三角形的直角,等腰三角形的腰與角以及圓的對稱性,根據(jù)圖形的特殊性質,找準討論對象,逐一解決。在探討等腰或直角三角形存在時,一定要按照一定的原則,不要遺漏,最后要綜合。這是中考數(shù)學的注意點之一。
2、討論點的位置,一定要看清點所在的范圍,是在直線上,還是在射線或者線段上。
3、圖形的對應關系多涉及到三角形的全等或相似問題,對其中可能出現(xiàn)的有關角、邊的可能對應情況加以分類討論
4、代數(shù)式變形中如果有絕對值、平方時,里面的數(shù)開出來要注意正負號的取舍。
5、考查點的取值情況或范圍。這部分多是考查自變量的取值范圍的分類,解題中應十分注意性質、定理的使用條件及范圍.
6、函數(shù)題目中如果說函數(shù)圖象與坐標軸有交點,那么一定要討論這個交點是和哪一個坐標軸的哪一半軸的交點。這也是中考數(shù)學的注意點。
7、由動點問題引出的函數(shù)關系,當運動方式改變后(比如從一條線段移動到另一條線段)是,所寫的函數(shù)應該進行分段討論。
2021中考知識點歸納數(shù)學8
有理數(shù)乘法法則:
(1)兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘;
(2)任何數(shù)同零相乘都得零;
(3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數(shù)決定.
2021中考知識點歸納數(shù)學9
1。整式和分式
含有加、減、乘、除、乘方運算的代數(shù)式叫做有理式。
沒有除法運算或雖有除法運算但除式中不含有字母的有理式叫做整式。
有除法運算并且除式中含有字母的有理式叫做分式。
2。單項式與多項式
沒有加減運算的整式叫做單項式。(數(shù)字與字母的`積—包括單獨的一個數(shù)或字母)
幾個單項式的和,叫做多項式。
說明:①根據(jù)除式中有否字母,將整式和分式區(qū)別開;根據(jù)整式中有否加減運算,把單項式、多項式區(qū)分開。②進行代數(shù)式分類時,是以所給的代數(shù)式為對象,而非以變形后的代數(shù)式為對象。劃分代數(shù)式類別時,是從外形來看。如,
=x, =│x│等。
3。系數(shù)與指數(shù)
區(qū)別與聯(lián)系:①從位置上看;②從表示的意義上看
4。同類項及其合并
條件:①字母相同;②相同字母的指數(shù)相同
合并依據(jù):乘法分配律
5。根式
表示方根的代數(shù)式叫做根式。
含有關于字母開方運算的代數(shù)式叫做無理式。
注意:①從外形上判斷;②區(qū)別: 、是根式,但不是無理式(是無理數(shù))。
6。算術平方根
、耪龜(shù)a的正的平方根( );
、扑阈g平方根與絕對值
① 聯(lián)系:都是非負數(shù), =│a│
②區(qū)別:│a│中,a為一切實數(shù); 中,a為非負數(shù)。
7。同類二次根式、最簡二次根式、分母有理化
化為最簡二次根式以后,被開方數(shù)相同的二次根式叫做同類二次根式。
滿足條件:①被開方數(shù)的因數(shù)是整數(shù),因式是整式;②被開方數(shù)中不含有開得盡方的因數(shù)或因式。
把分母中的根號劃去叫做分母有理化。
8。指數(shù)
、 ( —冪,乘方運算)
、 a0時, 0;②a0時, 0(n是偶數(shù)),0(n是奇數(shù))
、屏阒笖(shù): =1(a≠0)
負整指數(shù): =1/ (a≠0,p是正整數(shù))
2021中考知識點歸納數(shù)學10
自然數(shù)的分類包括了奇數(shù)和偶數(shù),質數(shù)與合數(shù)、1和0。
自然數(shù)的分類
、侔茨芊癖2整除分
可分為奇數(shù)和偶數(shù)。
1、奇 數(shù):不能被2整除的數(shù)叫奇數(shù)。
2、偶 數(shù):能被2整除的數(shù)叫偶數(shù)。
注:0是偶數(shù)。(20xx年國際數(shù)學協(xié)會規(guī)定,零為偶數(shù).我國20xx年也規(guī)定零為偶數(shù)。偶數(shù)可以被2整除,0照樣可以,只不過得數(shù)依然是0而已)。
、诎匆驍(shù)個數(shù)分
可分為質數(shù)、合數(shù)、1和0。
1、質 數(shù):只有1和它本身這兩個因數(shù)的自然數(shù)叫做質數(shù)。也稱作素數(shù)。
2、合 數(shù):除了1和它本身還有其它的因數(shù)的自然數(shù)叫做合數(shù)。
3、1:只有1個因數(shù)。它既不是質數(shù)也不是合數(shù)。
4、當然0不能計算因數(shù),和1一樣,也不是質數(shù)也不是合數(shù)。
備注:這里是因數(shù)不是約數(shù)。
同學們對于“0”,它是否包括在自然數(shù)之內存在爭議,其實學術界目前關于這個問題尚無一致意見。
2021中考知識點歸納數(shù)學11
平方根表示法:一個非負數(shù)a的平方根記作,讀作正負根號a。a叫被開方數(shù)。
中被開方數(shù)的取值范圍:被開方數(shù)a≥0
平方根性質:①一個正數(shù)的平方根有兩個,它們互為相反數(shù)。②0的平方根是它本身0。③負數(shù)沒有平方根開平方;求一個數(shù)的平方根的運算,叫做開平方。
平方根與算術平方根區(qū)別:1、定義不同。2表示方法不同。3、個數(shù)不同。4、取值范圍不同。
聯(lián)系:1、二者之間存在著從屬關系。2、存在條件相同。3、0的算術平方根與平方根都是0
含根號式子的意義:表示a的平方根,表示a的算術平方根,表示a的負的平方根。
求正數(shù)a的算術平方根的方法;
完全平方數(shù)類型:①想誰的平方是數(shù)a。②所以a的平方根是多少。③用式子表示。
求正數(shù)a的算術平方根,只需找出平方后等于a的正數(shù)。
2021中考知識點歸納數(shù)學12
最簡單的解釋就是,不等式是指用不等號可以將兩個解析式連接起來所成的式子。
1.概念:在一個式子中的數(shù)的關系,不全是等號,含不等符號的式子,那它就是一個不等式.例如2x+2y≥2xy,sinx≤1,ex>0 ,2x<3,5x≠5等>x是超越不等式。
2、分類:不等式分為嚴格不等式與非嚴格不等式。
一般地,用純粹的大于號、小于號“>”“<”連接的不等式稱為嚴格不等式,用不小于號(大于或等于號)、不大于號(小于或等于號)
“≥”(大于等于符號)“≤”(小于等于符號)連接的不等式稱為非嚴格不等式,或稱廣義不等式。
通常不等式中的數(shù)是實數(shù),字母也代表實數(shù),不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z )(其中不等號也可以為<,≥,> 中某一個),兩邊的解析式的公共定義域稱為不等式的定義域,不等式既可以表達一個命題,也可以表示一個問題。
我們大家在判定不等式時要記得,在一個式子中的數(shù)的關系,不全是等號,含不等符號的式子,那它就是一個不等式。
2021中考知識點歸納數(shù)學13
二次函數(shù)的最值(10分)
如果自變量的取值范圍是全體實數(shù),那么函數(shù)在頂點處取得值(或最小值),即當時,。
如果自變量的取值范圍是,那么,首先要看是否在自變量取值范圍內,若在此范圍內,則當x=時,;若不在此范圍內,則需要考慮函數(shù)在范圍內的增減性,如果在此范圍內,y隨x的增大而增大,則當時,,當時,;如果在此范圍內,y隨x的增大而減小,則當時,,當時,。
2021中考知識點歸納數(shù)學14
1、解不等式問題的分類
(1)解一元一次不等式、
(2)解一元二次不等式、
(3)可以化為一元一次或一元二次不等式的不等式、
①解一元高次不等式;
、诮夥质讲坏仁;
、劢鉄o理不等式;
④解指數(shù)不等式;
、萁鈱(shù)不等式;
⑥解帶絕對值的不等式;
、呓獠坏仁浇M、
2、解不等式時應特別注意下列幾點:
(1)正確應用不等式的基本性質、
(2)正確應用冪函數(shù)、指數(shù)函數(shù)和對數(shù)函數(shù)的增、減性、
(3)注意代數(shù)式中未知數(shù)的取值范圍、
3、不等式的同解性
(5)|f(x)| (6)|f(x)|>g(x)①與f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解;②與g(x)<0同解、 (9)當a>1時,af(x)>ag(x)與f(x)>g(x)同解,當0ag(x)與f(x) 有理數(shù)的乘方 (1)求相同因數(shù)的積的運算叫做乘方.乘方運算的結果叫冪. 一般地,記作,讀作:a的n次方,表示n個a相乘;其中,a是底數(shù),n是指數(shù),稱為冪。 (2)正數(shù)的任何次冪都是正數(shù). 負數(shù)的奇數(shù)次冪是負數(shù), 負數(shù)的偶數(shù)次冪是正數(shù). (3)一個數(shù)的平方為它本身,這個數(shù)是0和1; 一個數(shù)的立方為它本身,這個數(shù)是0、1和-1。 【2021中考知識點歸納數(shù)學(集合15篇)】相關文章: 2021中考知識點歸納數(shù)學09-01 中考數(shù)學知識點歸納10-30 數(shù)學中考知識點歸納整理02-17 2021中考知識點歸納數(shù)學大全02-10 初中數(shù)學中考橢圓的知識點歸納01-26 中考常用知識點歸納11-26 數(shù)學重要知識點歸納02-142021中考知識點歸納數(shù)學15