av手机免费在线观看,国产女人在线视频,国产xxxx免费,捆绑调教一二三区,97影院最新理论片,色之久久综合,国产精品日韩欧美一区二区三区

數(shù)學 百文網(wǎng)手機站

高一數(shù)學最知識點

時間:2022-07-19 14:38:56 數(shù)學 我要投稿

高一數(shù)學最新人教版知識點匯總

數(shù)學是人類對事物的抽象結構與模式進行嚴格描述、推導的一種通用手段,可以應用于現(xiàn)實世界的任何問題,所有的數(shù)學對象本質(zhì)上都是人為定義的。下面是小編整理的高一數(shù)學最新人教版知識點匯總,歡迎大家分享。

高一數(shù)學最新人教版知識點匯總

  高一數(shù)學最知識點1

  集合間的基本關系

  1.“包含”關系—子集

  注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

  2.“相等”關系:A=B(5≥5,且5≤5,則5=5)

  實例:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”

  即:①任何一個集合是它本身的子集。A?A

 、谡孀蛹:如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)

 、廴绻鸄?B,B?C,那么A?C

  ④如果A?B同時B?A那么A=B

  3.不含任何元素的集合叫做空集,記為Φ

  規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

  4.子集個數(shù):

  有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集

  集合的運算

  運算類型交集并集補集

  定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.

  由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).

  設S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

  記作,即

  CSA=

  性質(zhì)AA=A

  AΦ=Φ

  AB=BA

  ABA

  ABB

  AA=A

  AΦ=A

  AB=BA

  ABA

  ABB

  (CuA)(CuB)

  =Cu(AB)

  (CuA)(CuB)

  =Cu(AB)

  A(CuA)=U

  A(CuA)=Φ.

  高一數(shù)學最知識點2

  1.多面體的結構特征

  (1)棱柱有兩個面相互平行,其余各面都是平行四邊形,每相鄰兩個四邊形的公共邊平行。

  正棱柱:側棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多邊形,側棱垂直于底面,側面是矩形。

  (2)棱錐的底面是任意多邊形,側面是有一個公共頂點的三角形。

  正棱錐:底面是正多邊形,頂點在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐.特別地,各棱均相等的正三棱錐叫正四面體.反過來,正棱錐的底面是正多邊形,且頂點在底面的射影是底面正多邊形的中心。

  (3)棱臺可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形。

  2.旋轉(zhuǎn)體的結構特征

  (1)圓柱可以由矩形繞一邊所在直線旋轉(zhuǎn)一周得到.

  (2)圓錐可以由直角三角形繞一條直角邊所在直線旋轉(zhuǎn)一周得到.

  (3)圓臺可以由直角梯形繞直角腰所在直線旋轉(zhuǎn)一周或等腰梯形繞上下底面中心所在直線旋轉(zhuǎn)半周得到,也可由平行于底面的平面截圓錐得到。

  (4)球可以由半圓面繞直徑旋轉(zhuǎn)一周或圓面繞直徑旋轉(zhuǎn)半周得到。

  3.空間幾何體的三視圖

  空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側視圖、俯視圖。

  三視圖的長度特征:“長對正,寬相等,高平齊”,即正視圖和側視圖一樣高,正視圖和俯視圖一樣長,側視圖和俯視圖一樣寬.若相鄰兩物體的表面相交,表面的交線是它們的分界線,在三視圖中,要注意實、虛線的畫法。

  4.空間幾何體的直觀圖

  空間幾何體的直觀圖常用斜二測畫法來畫,基本步驟是:

  (1)畫幾何體的底面

  在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點O,畫直觀圖時,把它們畫成對應的x′軸、y′軸,兩軸相交于點O′,且使∠x′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線段,在直觀圖中平行于x′軸、y′軸.已知圖形中平行于x軸的線段,在直觀圖中長度不變,平行于y軸的線段,長度變?yōu)樵瓉淼囊话搿?/p>

  (2)畫幾何體的高

  在已知圖形中過O點作z軸垂直于xOy平面,在直觀圖中對應的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線段,在直觀圖中仍平行于z′軸且長度不變。

  高一數(shù)學最知識點3

  空間幾何體表面積體積公式:

  1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

  2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

  3、a-邊長,S=6a2,V=a3

  4、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc

  5、棱柱S-h-高V=Sh

  6、棱錐S-h-高V=Sh/3

  7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3

  8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6

  9、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側—,S表—表面積C=2πrS底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h

  10、空心圓柱R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)

  11、r-底半徑h-高V=πr^2h/3

  12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6

  14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3

  15、球臺r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6

  16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/4

  17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

  高一數(shù)學最知識點4

  反比例函數(shù)

  形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

  自變量x的取值范圍是不等于0的一切實數(shù)。

  反比例函數(shù)圖像性質(zhì):

  反比例函數(shù)的圖像為雙曲線。

  由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關于原點對稱。

  另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

  如圖,上面給出了k分別為正和負(2和-2)時的函數(shù)圖像。

  當K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

  當K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)

  反比例函數(shù)圖像只能無限趨向于坐標軸,無法和坐標軸相交。

  知識點:

  1.過反比例函數(shù)圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。

  2.對于雙曲線y=k/x,若在分母上加減任意一個實數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)

  高一數(shù)學最知識點5

  圓的方程定義:

  圓的標準方程(x—a)2+(y—b)2=r2中,有三個參數(shù)a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。

  直線和圓的位置關系:

  1、直線和圓位置關系的判定方法一是方程的觀點,即把圓的方程和直線的方程聯(lián)立成方程組,利用判別式Δ來討論位置關系。

 、佴>0,直線和圓相交。②Δ=0,直線和圓相切。③Δ<0,直線和圓相離。

  方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較。

  ①dR,直線和圓相離。

  2、直線和圓相切,這類問題主要是求圓的切線方程。求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況。

  3、直線和圓相交,這類問題主要是求弦長以及弦的中點問題。

  切線的性質(zhì)

 、艌A心到切線的距離等于圓的半徑;

 、七^切點的半徑垂直于切線;

  ⑶經(jīng)過圓心,與切線垂直的直線必經(jīng)過切點;

 、冉(jīng)過切點,與切線垂直的直線必經(jīng)過圓心;

  當一條直線滿足

 。1)過圓心;

 。2)過切點;

 。3)垂直于切線三個性質(zhì)中的兩個時,第三個性質(zhì)也滿足。

  切線的判定定理

  經(jīng)過半徑的外端點并且垂直于這條半徑的直線是圓的切線。

  切線長定理

  從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角。

  高一數(shù)學最知識點6

  1、柱、錐、臺、球的結構特征

  (1)棱柱:定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相

  平行,由這些面所圍成的幾何體。

  分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱柱、四棱柱、五棱柱等。

  表示:用各頂點字母,如五棱柱ABCDE?A'B'C'D'E'或用對角線的端點字母,如五棱柱AD'

  幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平

  行于底面的截面是與底面全等的多邊形。

  (2)棱錐

  定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱錐、四棱錐、五棱錐等

  表示:用各頂點字母,如五棱錐P?A'B'C'D'E'

  幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離

  與高的比的平方。

  (3)棱臺:定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分

  分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱態(tài)、四棱臺、五棱臺等

  表示:用各頂點字母,如五棱臺P?A'B'C'D'E'

  幾何特征:

 、偕舷碌酌媸窍嗨频钠叫卸噙呅

 、趥让媸翘菪

 、蹅壤饨挥谠忮F的頂點

  (4)圓柱:定義:以矩形的`一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體幾何特征:

 、俚酌媸侨鹊膱A;

 、谀妇與軸平行;

 、圯S與底面圓的半徑垂直;

 、軅让嬲归_圖是一個矩形。

  高一數(shù)學最知識點7

  直線和平面垂直

  直線和平面垂直的定義:如果一條直線a和一個平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。

  直線與平面垂直的判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個平面。

  直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。③直線和平面平行——沒有公共點

  直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。

  直線和平面平行的判定定理:如果平面外一條直線和這個平面內(nèi)的一條直線平行,那么這條直線和這個平面平行。

  直線和平面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。

  多面體

  1、棱柱

  棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每兩個四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。

  棱柱的性質(zhì)

  (1)側棱都相等,側面是平行四邊形

  (2)兩個底面與平行于底面的截面是全等的多邊形

  (3)過不相鄰的兩條側棱的截面(對角面)是平行四邊形

  2、棱錐

  棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐

  棱錐的性質(zhì):

  (1)側棱交于一點。側面都是三角形

  (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方

  3、正棱錐

  正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。

  正棱錐的性質(zhì):

  (1)各側棱交于一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

  (3)多個特殊的直角三角形

  a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

  b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。

  高一數(shù)學最知識點8

  集合的有關概念

  1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素

  注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。

 、诩现械脑鼐哂写_定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。

 、奂暇哂袃煞矫娴囊饬x,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件

  2)集合的表示方法:常用的有列舉法、描述法和圖文法

  3)集合的分類:有限集,無限集,空集。

  4)常用數(shù)集:N,Z,Q,R,N

  子集、交集、并集、補集、空集、全集等概念

  1)子集:若對x∈A都有x∈B,則AB(或AB);

  2)真子集:AB且存在x0∈B但x0A;記為AB(或,且)

  3)交集:A∩B={x|x∈A且x∈B}

  4)并集:A∪B={x|x∈A或x∈B}

  5)補集:CUA={x|xA但x∈U}

  注意:A,若A≠?,則?A;

  若且,則A=B(等集)

  集合與元素

  掌握有關的術語和符號,特別要注意以下的符號:(1)與、?的區(qū)別;(2)與的區(qū)別;(3)與的區(qū)別。

  子集的幾個等價關系

 、貯∩B=AAB;②A∪B=BAB;③ABCuACuB;

 、蹵∩CuB=空集CuAB;⑤CuA∪B=IAB。

  交、并集運算的性質(zhì)

  ①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;

 、跜u(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;

  有限子集的個數(shù):

  設集合A的元素個數(shù)是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。

  練習題:

  已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},則M,N,P滿足關系()

  A)M=NPB)MN=PC)MNPD)NPM

  分析一:從判斷元素的共性與區(qū)別入手。

  解答一:對于集合M:{x|x=,m∈Z};對于集合N:{x|x=,n∈Z}

  對于集合P:{x|x=,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的數(shù),而6m+1表示被6除余1的數(shù),所以MN=P,故選B。

  高一數(shù)學最知識點9

  1.函數(shù)知識:基本初等函數(shù)性質(zhì)的考查,以導數(shù)知識為背景的函數(shù)問題;以向量知識為背景的函數(shù)問題;從具體函數(shù)的考查轉(zhuǎn)向抽象函數(shù)考查;從重結果考查轉(zhuǎn)向重過程考查;從熟悉情景的考查轉(zhuǎn)向新穎情景的考查。

  2.向量知識:向量具有數(shù)與形的雙重性,高考中向量試題的命題趨向:考查平面向量的基本概念和運算律;考查平面向量的坐標運算;考查平面向量與幾何、三角、代數(shù)等學科的綜合性問題。

  3.不等式知識:突出工具性,淡化獨立性,突出解,是不等式命題的新取向。高考中不等式試題的命題趨向:基本的線性規(guī)劃問題為必考內(nèi)容,不等式的性質(zhì)與指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)、二交函數(shù)等結合起來,考查不等式的性質(zhì)、最值、函數(shù)的單調(diào)性等;證明不等式的試題,多以函數(shù)、數(shù)列、解析幾何等知識為背景,在知識網(wǎng)絡的交匯處命題,綜合性強,能力要求高;解不等式的試題,往往與公式、根式和參數(shù)的討論聯(lián)系在一起。考查學生的等價轉(zhuǎn)化能力和分類討論能力;以當前經(jīng)濟、社會生產(chǎn)、生活為背景與不等式綜合的應用題仍將是高考的熱點,主要考查學生閱讀理解能力以及分析問題、解決問題的能力。

  4.立體幾何知識:2016年已經(jīng)變得簡單,2017年難度依然不大,基本的三視圖的考查難點不大,以及球與幾何體的組合體,涉及切,接的問題,線面垂直、平行位置關系的考查,已經(jīng)線面角,面面角和幾何體的體積計算等問題,都是重點考查內(nèi)容。

  5.解析幾何知識:小題主要涉及圓錐曲線方程,和直線與圓的位置關系,以及圓錐曲線幾何性質(zhì)的考查,極坐標下的解析幾何知識,解答題主要考查直線和圓的知識,直線與圓錐曲線的知識,涉及圓錐曲線方程,直線與圓錐曲線方程聯(lián)立,定點,定值,范圍的考查,考試的難度降低。

  6.導數(shù)知識:導數(shù)的考查還是以理科19題,文科20題的形式給出,從常見函數(shù)入手,導數(shù)工具作用(切線和單調(diào)性)的考查,綜合性強,能力要求高;往往與公式、導數(shù)往往與參數(shù)的討論聯(lián)系在一起,考查轉(zhuǎn)化與化歸能力,但今年的難點整體偏低。

  7.開放型創(chuàng)新題:答案不,或是邏輯推理題,以及解答題中的開放型試題的考查,都是重點,理科13,文科14題。

【高一數(shù)學最知識點】相關文章:

高一的數(shù)學掌握知識點02-25

高一數(shù)學的知識點03-08

小升初數(shù)學最易錯的知識點03-08

高一數(shù)學交集知識點01-13

高一數(shù)學函數(shù)知識點02-18

最新數(shù)學高一必修知識點02-23

高一數(shù)學必考知識點02-23

高一數(shù)學集合知識點01-26

高一數(shù)學下冊知識點01-27

高一數(shù)學圓的知識點12-07