av手机免费在线观看,国产女人在线视频,国产xxxx免费,捆绑调教一二三区,97影院最新理论片,色之久久综合,国产精品日韩欧美一区二区三区

數(shù)學(xué) 百文網(wǎng)手機(jī)站

高一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)

時(shí)間:2022-01-27 19:00:21 數(shù)學(xué) 我要投稿

高一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)

  在日常過(guò)程學(xué)習(xí)中,大家對(duì)知識(shí)點(diǎn)應(yīng)該都不陌生吧?知識(shí)點(diǎn)就是掌握某個(gè)問(wèn)題/知識(shí)的學(xué)習(xí)要點(diǎn)。哪些知識(shí)點(diǎn)能夠真正幫助到我們呢?以下是小編為大家收集的高一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn),供大家參考借鑒,希望可以幫助到有需要的朋友。

高一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)

  高一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)1

  空間直角坐標(biāo)系定義:

  過(guò)定點(diǎn)O,作三條互相垂直的數(shù)軸,它們都以O(shè)為原點(diǎn)且一般具有相同的長(zhǎng)度單位、這三條軸分別叫做x軸橫軸)、y軸縱軸、z軸豎軸;統(tǒng)稱(chēng)坐標(biāo)軸、通常把x軸和y軸配置在水平面上,而z軸則是鉛垂線;它們的正方向要符合右手規(guī)則,即以右手握住z軸,當(dāng)右手的四指從正向x軸以π/2角度轉(zhuǎn)向正向y軸時(shí),大拇指的指向就是z軸的正向,這樣的三條坐標(biāo)軸就組成了一個(gè)空間直角坐標(biāo)系,點(diǎn)O叫做坐標(biāo)原點(diǎn)。

  1、右手直角坐標(biāo)系

 、儆沂种苯亲鴺(biāo)系的建立規(guī)則:x軸、y軸、z軸互相垂直,分別指向右手的拇指、食指、中指;

 、谝阎c(diǎn)的坐標(biāo)P(x,y,z)作點(diǎn)的方法與步驟(路徑法):

  沿x軸正方向(x>0時(shí))或負(fù)方向(x<0時(shí))移動(dòng)|x|個(gè)單位,再沿y軸正方向(y>0時(shí))或負(fù)方向(y<0時(shí))移動(dòng)|y|個(gè)單位,最后沿x軸正方向(z>0時(shí))或負(fù)方向(z<>

  ③已知點(diǎn)的位置求坐標(biāo)的方法:

  過(guò)P作三個(gè)平面分別與x軸、y軸、z軸垂直于A,B,C,點(diǎn)A,B,C在x軸、y軸、z軸的坐標(biāo)分別是a,b,c則a,b,c就是點(diǎn)P的坐標(biāo)。

  2、在x軸上的點(diǎn)分別可以表示為a,0,0,0,b,0,0,0,c。

  在坐標(biāo)平面xOy,xOz,yOz內(nèi)的點(diǎn)分別可以表示為a,b,0,a,0,c,0,b,c。

  3、點(diǎn)Pa,b,c關(guān)于x軸的對(duì)稱(chēng)點(diǎn)的坐標(biāo)為a,-b,-c;

  點(diǎn)Pa,b,c關(guān)于y軸的對(duì)稱(chēng)點(diǎn)的坐標(biāo)為-a,b,-c;

  點(diǎn)Pa,b,c關(guān)于z軸的對(duì)稱(chēng)點(diǎn)的坐標(biāo)為-a,-b,c;

  點(diǎn)Pa,b,c關(guān)于坐標(biāo)平面xOy的對(duì)稱(chēng)點(diǎn)為a,b,-c;

  點(diǎn)Pa,b,c關(guān)于坐標(biāo)平面xOz的對(duì)稱(chēng)點(diǎn)為a,-b,c;

  點(diǎn)Pa,b,c關(guān)于坐標(biāo)平面yOz的對(duì)稱(chēng)點(diǎn)為-a,b,c;

  點(diǎn)Pa,b,c關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)-a,-b,-c。

  4、已知空間兩點(diǎn)Px1,y1,z1,Qx2,y2,z2,則線段PQ的中點(diǎn)坐標(biāo)為

  5、空間兩點(diǎn)間的距離公式

  已知空間兩點(diǎn)Px1,y1,z1,Qx2,y2,z2,則兩點(diǎn)的距離為特殊點(diǎn)Ax,y,z到原點(diǎn)O的距離為

  6、以Cx0,y0,z0為球心,r為半徑的球面方程為

  特殊地,以原點(diǎn)為球心,r為半徑的球面方程為x2+y2+z2=r2

  練習(xí)題:

  選擇題:

  1.在空間直角坐標(biāo)系中,已知點(diǎn)P(x,y,z),給出下列4條敘述:①點(diǎn)P關(guān)于x軸的對(duì)稱(chēng)點(diǎn)的坐標(biāo)是(x,-y,z)②點(diǎn)P關(guān)于yOz平面的對(duì)稱(chēng)點(diǎn)的坐標(biāo)是(x,-y,-z)③點(diǎn)P關(guān)于y軸的對(duì)稱(chēng)點(diǎn)的坐標(biāo)是(x,-y,z)④點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)的坐標(biāo)是(-x,-y,-z)其中正確的個(gè)數(shù)是()

  A.3B.2C.1D.0

  2.若已知A(1,1,1),B(-3,-3,-3),則線段AB的長(zhǎng)為()

  A.43

  B.23

  C.42

  D.32

  3.已知A(1,2,3),B(3,3,m),C(0,-1,0),D(2,―1,―1),則()

  A.|AB|>|CD|

  B.|AB|<|CD|C.|AB|≤|CD|

  D.|AB|≥|CD|

  4.設(shè)A(3,3,1),B(1,0,5),C(0,1,0),AB的中點(diǎn)M,則|CM|?()

  A.5

  B.2

  C.3

  D.4

  高一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)2

  1.函數(shù)的奇偶性

  (1)若f(x)是偶函數(shù),那么f(x)=f(-x);

  (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

  (3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或(f(x)≠0);

  (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡(jiǎn),再判斷其奇偶性;

  (5)奇函數(shù)在對(duì)稱(chēng)的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱(chēng)的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

  2.復(fù)合函數(shù)的有關(guān)問(wèn)題

  (1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數(shù)的問(wèn)題一定要注意定義域優(yōu)先的原則。

  (2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

  3.函數(shù)圖像(或方程曲線的對(duì)稱(chēng)性)

  (1)證明函數(shù)圖像的對(duì)稱(chēng)性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱(chēng)中心(對(duì)稱(chēng)軸)的對(duì)稱(chēng)點(diǎn)仍在圖像上;

  (2)證明圖像C1與C2的對(duì)稱(chēng)性,即證明C1上任意點(diǎn)關(guān)于對(duì)稱(chēng)中心(對(duì)稱(chēng)軸)的對(duì)稱(chēng)點(diǎn)仍在C2上,反之亦然;

  (3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對(duì)稱(chēng)曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

  (4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱(chēng)曲線C2方程為:f(2a-x,2b-y)=0;

  (5)若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對(duì)稱(chēng);

  (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對(duì)稱(chēng);

  4.函數(shù)的周期性

  (1)y=f(x)對(duì)x∈R時(shí),f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

  (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對(duì)稱(chēng),則f(x)是周期為2︱a︱的周期函數(shù);

  (3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對(duì)稱(chēng),則f(x)是周期為4︱a︱的周期函數(shù);

  (4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱(chēng),則f(x)是周期為2的周期函數(shù);

  (5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對(duì)稱(chēng),則函數(shù)y=f(x)是周期為2的周期函數(shù);

  (6)y=f(x)對(duì)x∈R時(shí),f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);

  5.方程k=f(x)有解k∈D(D為f(x)的值域);

  a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

  (1)(a>0,a≠1,b>0,n∈R+);

  (2)logaN=(a>0,a≠1,b>0,b≠1);

  (3)logab的符號(hào)由口訣“同正異負(fù)”記憶;

  (4)alogaN=N(a>0,a≠1,N>0);

  6.判斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn):

  (1)A中元素必須都有象且唯一;

  (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  7.能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

  8.對(duì)于反函數(shù),應(yīng)掌握以下一些結(jié)論:

  (1)定義域上的單調(diào)函數(shù)必有反函數(shù);

  (2)奇函數(shù)的反函數(shù)也是奇函數(shù);

  (3)定義域?yàn)榉菃卧丶腵偶函數(shù)不存在反函數(shù);

  (4)周期函數(shù)不存在反函數(shù);

  (5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;

  (6)y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

  9.處理二次函數(shù)的問(wèn)題勿忘數(shù)形結(jié)合

  二次函數(shù)在閉區(qū)間上必有最值,求最值問(wèn)題用“兩看法”:一看開(kāi)口方向;二看對(duì)稱(chēng)軸與所給區(qū)間的相對(duì)位置關(guān)系;

  10依據(jù)單調(diào)性

  利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類(lèi)參數(shù)的范圍問(wèn)題;

  11恒成立問(wèn)題的處理方法:

  (1)分離參數(shù)法;

  (2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;

  練習(xí)題:

  1.(-3,4)關(guān)于x軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為_(kāi)________,關(guān)于y軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為_(kāi)_________,

  關(guān)于原點(diǎn)對(duì)稱(chēng)的坐標(biāo)為_(kāi)_________.

  2.點(diǎn)B(-5,-2)到x軸的距離是____,到y(tǒng)軸的距離是____,到原點(diǎn)的距離是____

  3.以點(diǎn)(3,0)為圓心,半徑為5的圓與x軸交點(diǎn)坐標(biāo)為_(kāi)________________,

  與y軸交點(diǎn)坐標(biāo)為_(kāi)_______________

  4.點(diǎn)P(a-3,5-a)在第一象限內(nèi),則a的取值范圍是____________

  5.小華用500元去購(gòu)買(mǎi)單價(jià)為3元的一種商品,剩余的錢(qián)y(元)與購(gòu)買(mǎi)這種商品的件數(shù)x(件)

  之間的函數(shù)關(guān)系是______________,x的取值范圍是__________

  6.函數(shù)y=的自變量x的取值范圍是________

  7.當(dāng)a=____時(shí),函數(shù)y=x是正比例函數(shù)

  8.函數(shù)y=-2x+4的圖象經(jīng)過(guò)___________象限,它與兩坐標(biāo)軸圍成的三角形面積為_(kāi)________,

  周長(zhǎng)為_(kāi)______

  9.一次函數(shù)y=kx+b的圖象經(jīng)過(guò)點(diǎn)(1,5),交y軸于3,則k=____,b=____

  10.若點(diǎn)(m,m+3)在函數(shù)y=-x+2的圖象上,則m=____

  11.y與3x成正比例,當(dāng)x=8時(shí),y=-12,則y與x的函數(shù)解析式為_(kāi)__________

  12.函數(shù)y=-x的圖象是一條過(guò)原點(diǎn)及(2,___)的直線,這條直線經(jīng)過(guò)第_____象限,

  當(dāng)x增大時(shí),y隨之________

  13.函數(shù)y=2x-4,當(dāng)x_______,y0,b0,b>0;C、k

  高一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)3

  函數(shù)圖象知識(shí)歸納

  (1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的函數(shù)C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿(mǎn)足函數(shù)關(guān)系y=f(x),反過(guò)來(lái),以滿(mǎn)足y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的點(diǎn)(x,y),均在C上.

  (2)畫(huà)法

  A、描點(diǎn)法:

  B、圖象變換法

  常用變換方法有三種

  1)平移變換

  2)伸縮變換

  3)對(duì)稱(chēng)變換

  4.高中數(shù)學(xué)函數(shù)區(qū)間的概念

  (1)函數(shù)區(qū)間的分類(lèi):開(kāi)區(qū)間、閉區(qū)間、半開(kāi)半閉區(qū)間

  (2)無(wú)窮區(qū)間

  5.映射

  一般地,設(shè)A、B是兩個(gè)非空的函數(shù),如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于函數(shù)A中的任意一個(gè)元素x,在函數(shù)B中都有確定的元素y與之對(duì)應(yīng),那么就稱(chēng)對(duì)應(yīng)f:AB為從函數(shù)A到函數(shù)B的一個(gè)映射。記作“f(對(duì)應(yīng)關(guān)系):A(原象)B(象)”

  對(duì)于映射f:A→B來(lái)說(shuō),則應(yīng)滿(mǎn)足:

  (1)函數(shù)A中的每一個(gè)元素,在函數(shù)B中都有象,并且象是的;

  (2)函數(shù)A中不同的元素,在函數(shù)B中對(duì)應(yīng)的象可以是同一個(gè);

  (3)不要求函數(shù)B中的每一個(gè)元素在函數(shù)A中都有原象。

  6.高中數(shù)學(xué)函數(shù)之分段函數(shù)

  (1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。

  (2)各部分的自變量的取值情況.

  (3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.

  補(bǔ)充:復(fù)合函數(shù)

  如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱(chēng)為f、g的復(fù)合函數(shù)。

  高一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)4

  1.“包含”關(guān)系—子集

  注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

  2.“相等”關(guān)系(5≥5,且5≤5,則5=5)

  實(shí)例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同”

  結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B

 、偃魏我粋(gè)集合是它本身的子集。AíA

 、谡孀蛹:如果AíB,且A1B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)

 、廴绻鸄íB,BíC,那么AíC

 、苋绻鸄íB同時(shí)BíA那么A=B

  3.不含任何元素的集合叫做空集,記為Φ

  規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

  高一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)5

  反比例函數(shù)

  形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

  自變量x的取值范圍是不等于0的一切實(shí)數(shù)。

  反比例函數(shù)圖像性質(zhì):

  反比例函數(shù)的圖像為雙曲線。

  由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點(diǎn)對(duì)稱(chēng)。

  另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個(gè)坐標(biāo)軸作垂線,這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。

  如圖,上面給出了k分別為正和負(fù)(2和-2)時(shí)的函數(shù)圖像。

  當(dāng)K>0時(shí),反比例函數(shù)圖像經(jīng)過(guò)一,三象限,是減函數(shù)

  當(dāng)K<0時(shí),反比例函數(shù)圖像經(jīng)過(guò)二,四象限,是增函數(shù)

  反比例函數(shù)圖像只能無(wú)限趨向于坐標(biāo)軸,無(wú)法和坐標(biāo)軸相交。

  知識(shí)點(diǎn):

  1.過(guò)反比例函數(shù)圖象上任意一點(diǎn)作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為|k|。

  2.對(duì)于雙曲線y=k/x,若在分母上加減任意一個(gè)實(shí)數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個(gè)單位。(加一個(gè)數(shù)時(shí)向左平移,減一個(gè)數(shù)時(shí)向右平移)

  高一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)6

  定義:

  從平面解析幾何的角度來(lái)看,平面上的直線就是由平面直角坐標(biāo)系中的一個(gè)二元一次方程所表示的圖形。求兩條直線的交點(diǎn),只需把這兩個(gè)二元一次方程聯(lián)立求解,當(dāng)這個(gè)聯(lián)立方程組無(wú)解時(shí),兩直線平行;有無(wú)窮多解時(shí),兩直線重合;只有一解時(shí),兩直線相交于一點(diǎn)。常用直線向上方向與X軸正向的夾角(叫直線的傾斜角)或該角的正切(稱(chēng)直線的斜率)來(lái)表示平面上直線對(duì)于X軸的傾斜程度?梢酝ㄟ^(guò)斜率來(lái)判斷兩條直線是否互相平行或互相垂直,也可計(jì)算它們的交角。直線與某個(gè)坐標(biāo)軸的交點(diǎn)在該坐標(biāo)軸上的坐標(biāo),稱(chēng)為直線在該坐標(biāo)軸上的截距。直線在平面上的位置,由它的斜率和一個(gè)截距完全確定。在空間,兩個(gè)平面相交時(shí),交線為一條直線。因此,在空間直角坐標(biāo)系中,用兩個(gè)表示平面的三元一次方程聯(lián)立,作為它們相交所得直線的方程。

  表達(dá)式:

  斜截式:y=kx+b

  兩點(diǎn)式:y-y1/y1-y2=x-x1/x1-x2

  點(diǎn)斜式:y-y1=kx-x1

  截距式:x/a+y/b=0

  補(bǔ)充一下:最基本的標(biāo)準(zhǔn)方程不要忘了,AX+BY+C=0,

  因?yàn)?上面的四種直線方程不包含斜率K不存在的情況,如x=3,這條直線就不能用上面的四種形式表示,解題過(guò)程中尤其要注意,K不存在的情況。

  練習(xí)題:

  1.已知直線的方程是y+2=-x-1,則

  A.直線經(jīng)過(guò)點(diǎn)2,-1,斜率為-1

  B.直線經(jīng)過(guò)點(diǎn)-2,-1,斜率為1

  C.直線經(jīng)過(guò)點(diǎn)-1,-2,斜率為-1

  D.直線經(jīng)過(guò)點(diǎn)1,-2,斜率為-1

  【解析】選C.因?yàn)橹本方程y+2=-x-1可化為y--2=-[x--1],所以直線過(guò)點(diǎn)-1,-2,斜率為-1.

  2.直線3x+2y+6=0的斜率為k,在y軸上的截距為b,則有

  A.k=-,b=3B.k=-,b=-2

  C.k=-,b=-3D.k=-,b=-3

  【解析】選C.直線方程3x+2y+6=0化為斜截式得y=-x-3,故k=-,b=-3.

  3.已知直線l的方程為y+1=2x+,且l的斜率為a,在y軸上的截距為b,則logab的值為

  A.B.2C.log26D.0

  【解析】選B.由題意得a=2,令x=0,得b=4,所以logab=log24=2.

  4.直線l:y-1=kx+2的傾斜角為135°,則直線l在y軸上的截距是

  A.1B.-1C.2D.-2

  【解析】選B.因?yàn)閮A斜角為135°,所以k=-1,

  所以直線l:y-1=-x+2,

  令x=0得y=-1.

  5.經(jīng)過(guò)點(diǎn)-1,1,斜率是直線y=x-2的斜率的2倍的直線是

  A.x=-1B.y=1

  C.y-1=x+1D.y-1=2x+1

  【解析】選C.由已知得所求直線的斜率k=2×=.

  則所求直線方程為y-1=x+1.

  高一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)7

  (1)直線的傾斜角

  定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α180°

  (2)直線的斜率

  ①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當(dāng)時(shí),。當(dāng)時(shí),;當(dāng)時(shí),不存在。

 、谶^(guò)兩點(diǎn)的直線的斜率公式:

  注意下面四點(diǎn):(1)當(dāng)時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90°;

  (2)k與P1、P2的順序無(wú)關(guān);

  (3)以后求斜率可不通過(guò)傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

  (4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。

  (3)直線方程

  ①點(diǎn)斜式:

  直線斜率k,且過(guò)點(diǎn)

  注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1。當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。

 、谛苯厥剑,直線斜率為k,直線在y軸上的截距為b

 、蹆牲c(diǎn)式:()直線兩點(diǎn),

 、芙鼐厥剑

  其中直線與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為。

 、菀话闶剑(A,B不全為0)

 、菀话闶剑(A,B不全為0)

  注意:○1各式的適用范圍

  ○2特殊的方程如:平行于x軸的直線:

  (b為常數(shù));平行于y軸的直線:

  (a為常數(shù));

  (4)直線系方程:即具有某一共同性質(zhì)的直線

  (一)平行直線系

  平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

  (二)過(guò)定點(diǎn)的直線系

  (ⅰ)斜率為k的直線系:,直線過(guò)定點(diǎn);

  (ⅱ)過(guò)兩條直線,的交點(diǎn)的直線系方程為(為參數(shù)),其中直線不在直線系中。

  (5)兩直線平行與垂直

  當(dāng)時(shí)注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否。

  (6)兩條直線的交點(diǎn)

  相交

  交點(diǎn)坐標(biāo)即方程組的一組解。方程組無(wú)解;方程組有無(wú)數(shù)解與重合

  (7)兩點(diǎn)間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個(gè)點(diǎn),則

  (8)點(diǎn)到直線距離公式:一點(diǎn)到直線的距離

  (9)兩平行直線距離公式:在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解。

  高一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)8

  一、變量、自變量與因變量

  ①兩個(gè)變量x與y,y隨x的改變而改變,那么x是自變量(先變的量),y是因變量(后變的量)。

  二、變量之間的表示方法:

 、倭斜矸

 、陉P(guān)系式法:能精確地反映自變量與因變量之間數(shù)值的對(duì)應(yīng)關(guān)系。

 、蹐D象法:用水平方向的數(shù)軸(橫軸)上的點(diǎn)表示自變量,用堅(jiān)直方向的數(shù)軸(縱軸)表示因變量。

  第五章生活中的軸對(duì)稱(chēng)

  一、軸對(duì)稱(chēng)圖形與軸對(duì)稱(chēng)

  ①一個(gè)圖形沿某一條直線對(duì)折,直線兩旁的部分能完成重合的圖形叫做軸對(duì)稱(chēng)圖形。這條直線叫做對(duì)稱(chēng)軸。

  ②兩個(gè)圖形沿某一條直線折疊,這兩個(gè)圖形能完全重合,就說(shuō)這兩個(gè)圖形關(guān)于這條直線成軸對(duì)稱(chēng)。這條直線叫做對(duì)稱(chēng)軸。

 、鄢R(jiàn)的軸對(duì)稱(chēng)圖形:線段(兩條對(duì)稱(chēng)軸),角,長(zhǎng)方形,正方形,等腰三角形,等邊三角形,等腰梯形,圓,扇形

  二、角平分線的性質(zhì):角平分線上的點(diǎn)到角兩邊的距離相等。

  ∵∠1=∠2PB⊥OBPA⊥OA

  ∴PB=PA

  三、線段垂直平分線:

 、俑拍睿捍怪鼻移椒志段的直線叫做這條線段的垂直平分線。

 、谛再|(zhì):線段垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等。

  ∵OA=OBCD⊥AB

  ∴PA=PB

  四、等腰三角形性質(zhì):(有兩條邊相等的三角形叫做等腰三角形)

  ①等腰三角形是軸對(duì)稱(chēng)圖形;(一條對(duì)稱(chēng)軸)

 、诘妊切蔚走吷现芯,底邊上的高,頂角的平分線重合;(三線合一)

 、鄣妊切蔚膬蓚(gè)底角相等。(簡(jiǎn)稱(chēng):等邊對(duì)等角)

  五、在一個(gè)三角形中,如果有兩個(gè)角相等,那么它所對(duì)的兩條邊也相等。(簡(jiǎn)稱(chēng):等角對(duì)等邊)

  六、等邊三角形的性質(zhì):等邊三角形是特殊的等腰三角形,它具有等腰三角形的所有性質(zhì)。

 、俚冗吶切蔚娜龡l邊相等,三個(gè)角都等于60;②等邊三角形有三條對(duì)稱(chēng)軸。

  七、軸對(duì)稱(chēng)的性質(zhì):

 、訇P(guān)于某條直線對(duì)稱(chēng)的兩個(gè)圖形是全等形;②對(duì)應(yīng)線段、對(duì)應(yīng)角相等;

 、趯(duì)應(yīng)點(diǎn)的連線被對(duì)稱(chēng)軸垂直且平分;④對(duì)應(yīng)線段如果相交,那么交點(diǎn)在對(duì)稱(chēng)軸上。

  八、鏡子改變了什么:

  1、物與像關(guān)于鏡面成軸對(duì)稱(chēng);(分清左右對(duì)稱(chēng)與上下對(duì)稱(chēng))

  2、常見(jiàn)的問(wèn)題:①物體成像問(wèn)題;②數(shù)字與字母成像問(wèn)題;③時(shí)鐘成像問(wèn)題

  第六章概率

  一、概率:反映事件發(fā)生可能性大小的數(shù)。事件P的概率=

  二、事件的分類(lèi)

  三、游戲是否公平:雙方事件發(fā)生的概率是否相等。

【高一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)】相關(guān)文章:

高一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)分享10-21

高一年級(jí)數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)06-13

物理下冊(cè)高一知識(shí)點(diǎn)復(fù)習(xí)07-30

高等數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)07-30

初三數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)復(fù)習(xí)10-23

高一下冊(cè)數(shù)學(xué)重要知識(shí)點(diǎn)大全總結(jié)01-05

高一數(shù)學(xué)知識(shí)點(diǎn)08-08

高一地理下冊(cè)知識(shí)點(diǎn)08-13

初三數(shù)學(xué)下冊(cè)期末知識(shí)點(diǎn)歸納10-22