av手机免费在线观看,国产女人在线视频,国产xxxx免费,捆绑调教一二三区,97影院最新理论片,色之久久综合,国产精品日韩欧美一区二区三区

數(shù)學(xué) 百文網(wǎng)手機(jī)站

考研數(shù)學(xué)復(fù)習(xí)答題技巧有哪些

時(shí)間:2021-06-23 13:13:40 數(shù)學(xué) 我要投稿

考研數(shù)學(xué)復(fù)習(xí)答題技巧有哪些

  篇一:考研數(shù)學(xué)概率論與數(shù)理統(tǒng)計(jì)復(fù)習(xí)技巧

  考研數(shù)學(xué)中,除數(shù)學(xué)二外,數(shù)一和數(shù)三都考查概率統(tǒng)計(jì)的知識(shí),而且分值占比很高。根據(jù)文都考研命題研究中心老師的調(diào)查結(jié)果分析,這部分內(nèi)容考題一般難度不大,只要認(rèn)真復(fù)習(xí),拿滿分都是沒(méi)有問(wèn)題的。下面,都教授就帶著大家看看概率論和數(shù)理統(tǒng)計(jì)是如何復(fù)習(xí)拿滿分的。

考研數(shù)學(xué)復(fù)習(xí)答題技巧有哪些

  基本公式要掌握

  首先必須會(huì)計(jì)算古典型概率,這個(gè)用高中數(shù)學(xué)的知識(shí)就可解決,如果在解古典概率方面有些薄弱,就應(yīng)該系統(tǒng)地把高中數(shù)學(xué)中的概率知識(shí)復(fù)習(xí)一遍了,而且要將每類(lèi)型的概率求解問(wèn)題都做會(huì)了,雖然不一定會(huì)考到,但也要預(yù)防萬(wàn)一,而且為后面的復(fù)習(xí)做準(zhǔn)備。

  隨機(jī)事件和概率是概率統(tǒng)計(jì)的第一章內(nèi)容,也是后面內(nèi)容的基礎(chǔ),基本的概念、關(guān)系一定要分辨清楚。條件概率、全概率公式和貝葉斯公式是重點(diǎn),計(jì)算概率的除了上面提到的古典型概率,還有伯努利概型和幾何概型也是要重點(diǎn)掌握的。

  第二章是隨機(jī)變量及其分布,首先隨機(jī)變量及其分布函數(shù)的概念、性質(zhì)要理解,常見(jiàn)的離散型隨機(jī)變量及其概率分布:0-1分布、二項(xiàng)分布B(n,p)、幾何分布、超幾何分布、泊松分布P(λ);連續(xù)性隨機(jī)變量及其概率密度的概念;均勻分布U(a,b)、正態(tài)分布N(μ,σ2)、指數(shù)分布等,以上它們的性質(zhì)特點(diǎn)要記清楚并能熟練應(yīng)用,考題中常會(huì)有涉及。

  第三章是多維隨機(jī)變量及其分布,主要是二維的。大綱中規(guī)定的考試內(nèi)容有:二維離散型隨機(jī)變量的概率分布、邊緣分布和條件分布,二維連續(xù)型隨機(jī)變量的概率密度、邊緣概率密度和條件密度,隨機(jī)變量的獨(dú)立性和不相關(guān)性,常用二維隨機(jī)變量的分布,兩個(gè)及兩個(gè)以上隨機(jī)變量簡(jiǎn)單函數(shù)的分布。

  第四部分隨機(jī)變量的數(shù)字特征,這部分內(nèi)容掌握起來(lái)不難,主要是記憶一些相關(guān)公式,以及常見(jiàn)分布的數(shù)字特征。大數(shù)定律和中心極限定理這部分也是在理解的基礎(chǔ)上以記憶為主,再配合做相關(guān)的練習(xí)題就可輕松搞定。

  把握常考側(cè)重點(diǎn)

  數(shù)理統(tǒng)計(jì)這部分的考查難度也不大,首先基本概念都了解清楚。χ2分布、t分布和F分布的概念及性質(zhì)要熟悉,考題中常會(huì)有涉及。參數(shù)估計(jì)的矩估計(jì)法和最大似然估計(jì)法,驗(yàn)證估計(jì)量的無(wú)偏性是要重點(diǎn)掌握的。假設(shè)檢驗(yàn)考查到的不多,但只要是考綱中規(guī)定的都不應(yīng)忽視。顯著性檢驗(yàn)的基本思想、假設(shè)檢驗(yàn)的基本步驟、假設(shè)檢驗(yàn)可能產(chǎn)生的兩類(lèi)錯(cuò)誤以及單個(gè)及兩個(gè)正態(tài)總體的均值和方差的假設(shè)檢驗(yàn)是考點(diǎn)。

  總之概率統(tǒng)計(jì)部分考題的考查難度不會(huì)太大,考題靈活度也不如高等數(shù)學(xué),只要參考復(fù)習(xí)資料把基本概念、公式、定理掌握好了,例題、習(xí)題多做些,歷年真題里的相關(guān)題目認(rèn)真做幾遍,這樣下來(lái)概率統(tǒng)計(jì)部分掌握的也就差不多了,相信各位考生一定會(huì)考出個(gè)好成績(jī)。

  篇二:考研數(shù)學(xué)填空題高分解答技巧

  在考研數(shù)學(xué)中,填空題包含6道小題,每小題4分,共24分。填空題考查的知識(shí)點(diǎn)也是比較基礎(chǔ)的知識(shí),但是主要考察考生的基本運(yùn)算能力。最常用的技巧是“代入法”,考生可以把一些特殊的數(shù)字帶入的題目中去運(yùn)算。

  填空題只是要最后的結(jié)果,不用寫(xiě)出運(yùn)算步驟,因此我們只要得出結(jié)果就行,不管用什么樣的方法。因此,在做填空題時(shí),方法和過(guò)程不重要,重要的是運(yùn)算結(jié)果,要用最簡(jiǎn)單、最有效的方法算出結(jié)果?忌谌粘W鲱}時(shí)要經(jīng)常運(yùn)用這些技巧,將填空題計(jì)算常用的方法技巧爛熟于心,運(yùn)用起來(lái)才更加得心應(yīng)手。

  填空題的答案也是唯一的,做題的時(shí)候給出最后的結(jié)果就行,不需要推導(dǎo)過(guò)程,同樣也是答對(duì)得滿分,答錯(cuò)或者不答得0分,不倒扣分。這一部分的題目一般是需要一定技巧的計(jì)算,但不會(huì)有太復(fù)雜的計(jì)算題。

  題目的難度與選擇題不相上下,也是適中。填空題總共有6個(gè),一般高數(shù)4個(gè),線代和概率各1個(gè),主要考查的是考研數(shù)學(xué)中的三基本:基本概念、基本原理、基本方法以及一些基本的性質(zhì)。做這24分的題目時(shí)需要認(rèn)真審題,快速計(jì)算,并且需要有融會(huì)貫通的知識(shí)作為保障。

  篇三:歷年考研數(shù)學(xué)真題解析線性代數(shù)命題特點(diǎn)解析

  考研數(shù)學(xué)是研究生招生入學(xué)考試中通過(guò)筆試的形式對(duì)考生數(shù)學(xué)功底的考查,從近幾年的考研數(shù)學(xué)歷年真題分析結(jié)果來(lái)看,可以得出一個(gè)結(jié)論:線性代數(shù)的難度在高數(shù)和概率統(tǒng)計(jì)之間,且大多數(shù)的同學(xué)認(rèn)為線性代數(shù)試題難度不大,就是計(jì)算量稍微偏大點(diǎn),線代代數(shù)的考查是對(duì)基本方法的考查,但是往往在做題過(guò)程中需要利用一些性質(zhì)進(jìn)行輔助解決。

  線性代數(shù)的學(xué)科特點(diǎn)是知識(shí)點(diǎn)之間的綜合性比較強(qiáng),這也是它本身的一個(gè)難點(diǎn)。這就需要同學(xué)們?cè)趶?fù)習(xí)過(guò)程中,注意對(duì)于知識(shí)點(diǎn)間的關(guān)聯(lián)性進(jìn)行對(duì)比著學(xué)習(xí),有助于鞏固知識(shí)點(diǎn)且不易混淆。

  總體來(lái)說(shuō),線性代數(shù)主要包括六部分的內(nèi)容,行列式、矩陣、向量、線性方程組、特征值與特征向量、二次型。

  一、行列式部分,熟練掌握行列式的計(jì)算。

  行列式實(shí)質(zhì)上是一個(gè)數(shù)或含有字母的式子,如何把這個(gè)數(shù)算出來(lái),一般情況下很少用行列式的定義進(jìn)行求解,而往往采用行列式的性質(zhì)將其化成上或下三角行列式進(jìn)行計(jì)算,或是采用降階法(按行或按列展開(kāi)定理),甚至有時(shí)兩種方法同時(shí)用。此外范德蒙行列式也是需要掌握的。行列式的考查方式分為低階的數(shù)字型矩陣和高階抽象行列式的計(jì)算、含參數(shù)的行列式的計(jì)算等等。同學(xué)們只要掌握了基本方法即可。

  二、矩陣部分,重視矩陣運(yùn)算,掌握矩陣秩的應(yīng)用。

  通過(guò)考研數(shù)學(xué)歷年真題分類(lèi)統(tǒng)計(jì)與考點(diǎn)分布,矩陣部分的考點(diǎn)集中在逆矩陣、伴隨矩陣、矩陣的秩及矩陣方程的考查。此外,含隨矩陣的矩陣方程,矩陣與行列式的關(guān)系、逆矩陣的求法也是考生需要掌握的知識(shí)點(diǎn)。涉及秩的應(yīng)用,包含秩與矩陣可逆的關(guān)系,矩陣及其伴隨矩陣秩之間的關(guān)系,矩陣的秩與向量組的秩之間的關(guān)系,矩陣等價(jià)與向量組等價(jià)的區(qū)別與聯(lián)系,系數(shù)矩陣的秩與方程組的解之間關(guān)系的分析。

  三、向量部分,理解相關(guān)無(wú)關(guān)概念,靈活進(jìn)行判定。

  向量組的線性相關(guān)問(wèn)題是向量部分的重中之重,也是考研線性代數(shù)每年必出的考點(diǎn)。要求考生掌握線性相關(guān)、線性表出、線性無(wú)關(guān)的定義。以及如何判斷向量組線性相關(guān)及線性無(wú)關(guān)的方法。 向量組的秩和極大無(wú)關(guān)組以及向量組等價(jià)這些重要的知識(shí)點(diǎn)要求同學(xué)們一定一定掌握到位。

  這是線性代數(shù)前三個(gè)內(nèi)容的命題特點(diǎn),而行列式的矩陣是整個(gè)線性代數(shù)的基礎(chǔ),對(duì)于行列式的計(jì)算及矩陣的運(yùn)算與一些重要的性質(zhì)與結(jié)論請(qǐng)考生朋友們一定要?jiǎng)?wù)必掌握,否則的話,對(duì)于后面四部分的學(xué)習(xí)會(huì)越學(xué)越難,希望同學(xué)們?cè)趶?fù)習(xí)過(guò)程中一定注意前面內(nèi)容的復(fù)習(xí),為后面的考研數(shù)學(xué)復(fù)習(xí)打好基礎(chǔ)。

  前面我們已經(jīng)分析過(guò),考研數(shù)學(xué)線性代數(shù)這門(mén)學(xué)科整體的特點(diǎn)是知識(shí)點(diǎn)之間的綜合性比較強(qiáng),有些概念較為抽象,這也是大部分考生認(rèn)為考研數(shù)學(xué)線性代數(shù)不好學(xué),根本找不到復(fù)習(xí)的頭緒,做題時(shí)也是一頭霧水,不知道怎么分析考慮。

  這里,老師要求大家在學(xué)習(xí)過(guò)程中一定要注意知識(shí)間之間的關(guān)聯(lián)性,理解概率的實(shí)質(zhì)。如:矩陣的秩與向量組的秩之間的關(guān)聯(lián),矩陣等價(jià)與向量組等價(jià)的區(qū)別,矩陣等價(jià)、相似、合同三者之間的區(qū)別與聯(lián)系、矩陣相似對(duì)角化與實(shí)對(duì)稱矩陣正交變換對(duì)角化二者之間的區(qū)別與聯(lián)系等等。若是同學(xué)們對(duì)于上面的問(wèn)題根本分不清楚,則說(shuō)明大家對(duì)于基本概念、基本方法還沒(méi)有完全理解透徹。不過(guò),大家也不要太焦急,希望同學(xué)們?cè)诤笃诘膹?fù)習(xí)過(guò)程中對(duì)于基本概念、基本方法要多加理解和體會(huì),學(xué)習(xí)一定要有心得。

  下面我們分析一下后面三部分的內(nèi)容,線性方程組、特征值與特征向量、二次型的命題特點(diǎn)。

  線性方程組,會(huì)求兩類(lèi)方程組的解。線性方程組是線性代數(shù)這么學(xué)科的核心和樞紐,很多問(wèn)題的解決都離不開(kāi)解方程組。因而線性方程組解的問(wèn)題是每年必考的知識(shí)點(diǎn)。對(duì)于齊次線性方程組,我們需要掌握基礎(chǔ)解系的概念,以及如何求一個(gè)方程組的基礎(chǔ)解系。清楚明了基礎(chǔ)解系所含線性無(wú)關(guān)解向量的個(gè)數(shù)和系數(shù)矩陣的秩之間的關(guān)系。會(huì)判斷非齊次線性方程組的解的情況,掌握其求解的方法。此外,考生還需要掌握非齊次線性方程組與其對(duì)應(yīng)的齊次線性方程組的解結(jié)構(gòu)之間的關(guān)系。

  特征值與特征向量,掌握矩陣對(duì)角化的方法。這一部分是理論性較強(qiáng)的,理解特征值與特征向量的定義及性質(zhì),矩陣相似的定義,矩陣對(duì)角化的定義。同學(xué)們還需掌握求矩陣特征值與特征向量的基本方法。會(huì)判斷一個(gè)矩陣是否可以對(duì)角化,若可以的話,需要把相應(yīng)的可逆矩陣P求出來(lái)。還需要注意矩陣及其關(guān)聯(lián)矩陣(轉(zhuǎn)置、逆、伴隨、相似)的特征值與特征向量的關(guān)系。反問(wèn)題也是喜歡考查的一類(lèi)題型,已知矩陣的特征值與特征向量,反求矩陣A。

  二次型,理解二次型標(biāo)準(zhǔn)化的過(guò)程,掌握實(shí)對(duì)稱矩陣的對(duì)角化。二次型幾乎是每年必考的一道大題,一般考查的是采用正交變換法將二次型標(biāo)準(zhǔn)化。掌握二次型的標(biāo)準(zhǔn)形與規(guī)范型之間的區(qū)別與聯(lián)系。會(huì)判斷二次型是否正定的一般方法。討論矩陣等價(jià)、相似、合同的關(guān)系。

  雖然線性代數(shù)在考研數(shù)學(xué)考試試卷中僅有5題,占有34分的'分值,但是這34分也不是很輕松就能拿下的。同學(xué)們?cè)趶?fù)習(xí)過(guò)程中需要對(duì)于基礎(chǔ)知識(shí)點(diǎn)理解透徹,做考研數(shù)學(xué)題過(guò)程中多分析總結(jié)。

  篇四:考研數(shù)學(xué)概率解題9大常用思路

  在考研數(shù)學(xué)一和考研數(shù)學(xué)三中,概率論與數(shù)理統(tǒng)計(jì)部分大約占22%,雖然所占比重較小,但是大家在復(fù)習(xí)的時(shí)候,一樣會(huì)感到困難重重,特別是在做習(xí)題以及解決實(shí)際應(yīng)用方面遇到的困難會(huì)更多一些。為了幫助大家在解題時(shí)更輕松一點(diǎn),小編給大家分享一些考研數(shù)學(xué)概率解題常用思路集錦。

  1、如果要求的是若干事件中“至少”有一個(gè)發(fā)生的概率,則馬上聯(lián)想到概率加法公式;當(dāng)事件組相互獨(dú)立時(shí),用對(duì)立事件的概率公式。

  2、若給出的試驗(yàn)可分解成(0-1)的n重獨(dú)立重復(fù)試驗(yàn),則馬上聯(lián)想到Bernoulli試驗(yàn),及其概率計(jì)算公式

  3、若某事件是伴隨著一個(gè)完備事件組的發(fā)生而發(fā)生,則馬上聯(lián)想到該事件的發(fā)生概率是用全概率公式計(jì)算。關(guān)鍵:尋找完備事件組。

  4、若題設(shè)中給出隨機(jī)變量X~N則馬上聯(lián)想到標(biāo)準(zhǔn)化~N(0,1)來(lái)處理有關(guān)問(wèn)題。

  5、求二維隨機(jī)變量(X,Y)的邊緣分布密度的問(wèn)題,應(yīng)該馬上聯(lián)想到先畫(huà)出使聯(lián)合分布密度的區(qū)域,然后定出X的變化區(qū)間,再在該區(qū)間內(nèi)畫(huà)一條//y軸的直線,先與區(qū)域邊界相交的為y的下限,后者為上限,而的求法類(lèi)似。

  6、欲求二維隨機(jī)變量(X,Y)滿足條件Y≥g(X)或(Y≤g(X))的概率,應(yīng)該馬上聯(lián)想到二重積分的計(jì)算,其積分域D是由聯(lián)合密度的平面區(qū)域及滿足Y≥g(X)或(Y≤g(X))的區(qū)域的公共部分。

  7、涉及n次試驗(yàn)?zāi)呈录l(fā)生的次數(shù)X的數(shù)字特征的問(wèn)題,馬上要聯(lián)想到對(duì)X作(0-1)分解。即令

  8、凡求解各概率分布已知的若干個(gè)獨(dú)立隨機(jī)變量組成的系統(tǒng)滿足某種關(guān)系的概率(或已知概率求隨機(jī)變量個(gè)數(shù))的問(wèn)題,馬上聯(lián)想到用中心極限定理處理。

  9、若為總體X的一組簡(jiǎn)單隨機(jī)樣本,則凡是涉及到統(tǒng)計(jì)量的分布問(wèn)題,一般聯(lián)想到用分布,t分布和F分布的定義進(jìn)行討論。

  篇五:考研數(shù)學(xué)線性代數(shù)知識(shí)點(diǎn)整理

  第一章行列式

  1、行列式的定義

  2、行列式的性質(zhì)

  3、特殊行列式的值

  4、行列式展開(kāi)定理

  5、抽象行列式的計(jì)算

  第二章矩陣

  1、矩陣的定義及線性運(yùn)算

  2、乘法

  3、矩陣方冪

  4、轉(zhuǎn)置

  5、逆矩陣的概念和性質(zhì)

  6、伴隨矩陣

  7、分塊矩陣及其運(yùn)算

  8、矩陣的初等變換與初等矩陣

  9、矩陣的等價(jià)

  10、矩陣的秩

  第三章向量

  1、向量的概念及其運(yùn)算

  2、向量的線性組合與線性表出

  3、等價(jià)向量組

  4、向量組的線性相關(guān)與線性無(wú)關(guān)

  5、極大線性無(wú)關(guān)組與向量組的秩

  6、內(nèi)積與施密特正交化

  7、n維向量空間(數(shù)學(xué)一)

  第四章線性方程組

  1、線性方程組的克萊姆法則

  2、齊次線性方程組有非零解的判定條件

  3、非齊次線性方程組有解的判定條件

  4、線性方程組解的結(jié)構(gòu)

  第五章矩陣的特征值和特征向量

  1、矩陣的特征值和特征向量的概念和性質(zhì)

  2、相似矩陣的概念及性質(zhì)

  3、矩陣的相似對(duì)角化

  4、實(shí)對(duì)稱矩陣的特征值、特征向量及其相似對(duì)角矩陣

  第六章二次型

  1、二次型及其矩陣表示

  2、合同變換與合同矩陣

  3、二次型的秩

  4、二次型的標(biāo)準(zhǔn)型和規(guī)范型

  5、慣性定理

  6、用正交變換和配方法化二次型為標(biāo)準(zhǔn)型

  7、正定二次型及其判定

【考研數(shù)學(xué)復(fù)習(xí)答題技巧有哪些】相關(guān)文章:

考研數(shù)學(xué)的答題技巧有哪些11-10

考研英語(yǔ)復(fù)習(xí)有哪些答題技巧11-23

考研數(shù)學(xué)復(fù)習(xí)有哪些答題的方法11-24

考研數(shù)學(xué)復(fù)習(xí)有哪些答題順序12-11

考研數(shù)學(xué)有哪些復(fù)習(xí)的技巧11-14

考研數(shù)學(xué)初試有哪些答題技巧12-22

考研數(shù)學(xué)復(fù)習(xí)的答題技巧12-04

考研數(shù)學(xué)復(fù)習(xí)解題有哪些技巧11-06

考研數(shù)學(xué)復(fù)習(xí)有哪些做題技巧12-20