av手机免费在线观看,国产女人在线视频,国产xxxx免费,捆绑调教一二三区,97影院最新理论片,色之久久综合,国产精品日韩欧美一区二区三区

考研備考 百文網(wǎng)手機(jī)站

考研數(shù)學(xué)一最后40天沖刺必看的核心點

時間:2021-06-10 15:16:49 考研備考 我要投稿

考研數(shù)學(xué)一最后40天沖刺必看的核心點

  考研數(shù)學(xué)沖刺復(fù)習(xí)進(jìn)行中,我們在沖刺階段的時候,需要看一些核心的考點。小編為大家精心準(zhǔn)備了考研數(shù)學(xué)一最后40天沖刺必看的重點,歡迎大家前來閱讀。

考研數(shù)學(xué)一最后40天沖刺必看的核心點

  考研數(shù)學(xué)一最后40天沖刺必看關(guān)鍵點

  ▲高等數(shù)學(xué)分為5大知識模塊:

  1、一元微積分學(xué);

  2、多元微積分學(xué);

  3、曲線、曲面積分;

  4、無窮級數(shù);

  5、微分方程。

  這里面的曲線、曲面積分是數(shù)一的同學(xué)特有的,其他內(nèi)容是所有考數(shù)學(xué)的同學(xué)都要考查的。

  ▲線性代數(shù)分為3大知識模塊:

  1、行列式和矩陣;

  2、向量和線性方程組;

  3、特征值、特征向量和二次型。

  線性代數(shù)部分從考綱來看各個卷種的差別不大,近些年的變化也不大,是考研數(shù)學(xué)相對穩(wěn)定的一部分考查內(nèi)容。

  ▲概率論與數(shù)理統(tǒng)計分為3大知識模塊:

  1、概率、概率基本性質(zhì)及簡單的概型;

  2、隨機(jī)變量及其分布與數(shù)字特征;

  3、統(tǒng)計基本概念、參數(shù)估計及假設(shè)檢驗;

  這部分是數(shù)二的同學(xué)不要求的,而數(shù)一和數(shù)三大綱的要求還是有些差距的,比如數(shù)一要求假設(shè)檢驗而數(shù)三不要求。

  ★第一個層次是概念、性質(zhì)、公式、定理及相關(guān)知識之間的聯(lián)系、區(qū)別的歸納與總結(jié)。

  首先按照自己認(rèn)為的重要到次重要的順序進(jìn)行回憶,之后比照考試大綱所規(guī)定的考試內(nèi)容,看自己有哪些遺漏了,從而形成完整的知識網(wǎng)絡(luò)。我們還要對遺漏的知識點進(jìn)行分析,要搞清楚這個知識點是由于和這個小的知識模塊關(guān)系不緊密而沒有聯(lián)系起來,還是自己在復(fù)習(xí)過程中忽略了。

  對于前一種情況大家不用放在心上,只要看一看這個知識點說的是什么意思就可以了,比如:在我們回憶一元微積分學(xué)時,如果沒想起來曲率的概念,這關(guān)系不是很大,要知道和整個知識模塊相對游離的知識點往往不是考研的重點,我們知道即可?墒菍τ谀切┍緛砗苤匾闹R點由于自己的忽視而沒有想起來,這時我們要高度的重視起來了,這些知識應(yīng)該是自己的相對弱點和盲點,對這些知識點的復(fù)習(xí)是我們是否能考出好成績的關(guān)鍵!對這些知識點我們要想盡一切辦法去理解,去練習(xí),直到掌握了為止!在這一層次中大家要知道,考研中的重要的考點往往是不同部分的節(jié)點,這樣的知識點可能聯(lián)系著兩個或多個的概念,是起橋梁作用的知識。

  ★第二個層次是對題型的歸納總結(jié)。

  做完第一個層次的總結(jié),我們只是把考研要考的一些小的知識點形成了一個知識的網(wǎng)絡(luò)圖,但我們還不知道考研是從什么角度,如何考查大家,這時我們要進(jìn)行第二個層次的總結(jié)。我們歸納總結(jié)的.方法是先根據(jù)自己看過的和做過的輔導(dǎo)材料憑記憶總結(jié)出若干的題型,之后比照自己所看的材料看自己總結(jié)的是否能涵蓋復(fù)習(xí)材料中大部分的例題,另外,大家還可以參照專門講題型的書,用自己總結(jié)的題型和復(fù)習(xí)材料上的進(jìn)行對照,通過對照充實自己總結(jié)出來的題型。第三個層次是對題型解法的歸納總結(jié)。

  ★第三個層次對總結(jié)的題型進(jìn)行解題方法的總結(jié)。

  有了第二個層次的歸納總結(jié),我們對考研數(shù)學(xué)的畏懼心理都消失了,你已經(jīng)知道了考研數(shù)學(xué)可能考你的方式、方法和角度了,現(xiàn)在要做的是對總結(jié)的題型進(jìn)行解題方法的總結(jié)了。我們的方法是首先根據(jù)自己做過的一種題型的若干例題總結(jié)出典型的解題思路形成有效的解題程序和過程。對于一種題型我們可以從不同的例題中歸納出多種的方法和思路。之后,我們對照復(fù)習(xí)材料進(jìn)行充實和改造自己歸納的解題思路和方法,盡可能多的把能用的思路和方法總結(jié)出來。第四個層次是解題思路的升華。

  ★第四個層次找到合適的解題方法,提高解題速度。

  有了第三個層次的歸納總結(jié),我們對自己遇到的題目就心中有底了,我們已經(jīng)知道,一般的題目只要按照自己總結(jié)的方法一種一種的去試,基本上能把題目做出來,只不過我們的解題的速度不快,這時侯我們需要在第三個層次的基礎(chǔ)上進(jìn)行思路的升華,找到最好的對付一類題型的解題方法,提高我們的解題速度!我們的方法是在自己總結(jié)的方法中找最快捷和最適合自己發(fā)揮的解題思路,之后去找些有關(guān)題型的復(fù)習(xí)材料做些比較,再看看自己的方法和這些材料的方法哪個更適合自己。

  考研數(shù)學(xué)二微分學(xué)?碱}及基本考點匯總

  (一)考試內(nèi)容

  導(dǎo)數(shù)和微分的概念、導(dǎo)數(shù)的幾何意義和物理意義、函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系、平面曲線的切線和法線、導(dǎo)數(shù)和微分的四則運(yùn)算、基本初等函數(shù)的導(dǎo)數(shù)、復(fù)合函數(shù)、反函數(shù)、隱函數(shù)以及參數(shù)方程所確定的函數(shù)的微分法、高階導(dǎo)數(shù)、一階微分形式的不變性、微分中值定理、洛必達(dá)法則、函數(shù)單調(diào)性的判別、函數(shù)的極值、函數(shù)圖形的凹凸性、拐點及漸近線、函數(shù)圖形的描繪、函數(shù)的最大值及最小值、弧微分、曲率的概念、曲率圓與曲率半徑。

  (二)?碱}型

  1.對導(dǎo)數(shù)定義的考查;

  2.導(dǎo)數(shù)和微分的計算(包括高階導(dǎo)數(shù));

  3.切線與法線的計算;

  4.對函數(shù)單調(diào)性的考查;

  5.求函數(shù)極值與拐點、漸近線的問題;

  6.對函數(shù)以及其導(dǎo)數(shù)函數(shù)相關(guān)性質(zhì)的考查。

  考研數(shù)學(xué)沖刺求極限的方法

  首先對極限的總結(jié)如下。極限的保號性很重要就是說在一定區(qū)間內(nèi)函數(shù)的正負(fù)與極限一致。

  1、極限分為一般極限,還有個數(shù)列極限

  (區(qū)別在于數(shù)列極限是發(fā)散的,是一般極限的一種)。

  2、解決極限的方法如下

  1)等價無窮小的轉(zhuǎn)化,(只能在乘除時候使用,但是不是說一定在加減時候不能用但是前提是必須證明拆分后極限依然存在)e的X次方-1或者(1+x)的a次方-1等價于Ax等等。全部熟記。(x趨近無窮的時候還原成無窮小)

  2)洛必達(dá)法則(大題目有時候會有暗示要你使用這個方法)

  首先他的使用有嚴(yán)格的使用前提。必須是X趨近而不是N趨近。(所以面對數(shù)列極限時候先要轉(zhuǎn)化成求x趨近情況下的極限,當(dāng)然n趨近是x趨近的一種情況而已,是必要條件。還有一點數(shù)列極限的n當(dāng)然是趨近于正無窮的不可能是負(fù)無窮!)必須是函數(shù)的導(dǎo)數(shù)要存在!(假如告訴你g(x),沒告訴你是否可導(dǎo),直接用無疑是死路一條)必須是0比0,無窮大比無窮大!當(dāng)然還要注意分母不能為0。

  洛必達(dá)法則分為三種情況

  1)0比0無窮比無窮時候直接用

  2)0乘以無窮,無窮減去無窮(應(yīng)為無窮大于無窮小成倒數(shù)的關(guān)系)所以無窮大都寫成了無窮小的倒數(shù)形式了。通項之后這樣就能變成1中的形式了

  3)0的0次方,1的無窮次方,無窮的0次方

  對于(指數(shù)冪數(shù))方程方法主要是取指數(shù)還取對數(shù)的方法,這樣就能把冪上的函數(shù)移下來了,就是寫成0與無窮的形式了,(這就是為什么只有3種形式的原因,ln(x)兩端都趨近于無窮時候他的冪移下來趨近于0,當(dāng)他的冪移下來趨近于無窮的時候ln(x)趨近于0)

  3、泰勒公式

  (含有e^x的時候,尤其是含有正余旋的加減的時候要特變注意!)e^x展開,sinx展開,cos展開,ln(1+x)展開對題目簡化有很好幫助

  4、面對無窮大比上無窮大形式的解決辦法。

  取大頭原則最大項除分子分母!看上去復(fù)雜處理很簡單。

  5、無窮小與有界函數(shù)的處理辦法

  面對復(fù)雜函數(shù)時候,尤其是正余弦的復(fù)雜函數(shù)與其他函數(shù)相乘的時候,一定要注意這個方法。面對非常復(fù)雜的函數(shù)可能只需要知道它的范圍結(jié)果就出來了!

  6、夾逼定理

  (主要對付的是數(shù)列極限)這個主要是看見極限中的函數(shù)是方程相除的形式,放縮和擴(kuò)大。

  7、等比等差數(shù)列公式應(yīng)用

  (對付數(shù)列極限)(q絕對值符號要小于1)

  8、各項的拆分相加

  (來消掉中間的大多數(shù))(對付的還是數(shù)列極限)可以使用待定系數(shù)法來拆分化簡函數(shù)。

  9、求左右求極限的方式

  (對付數(shù)列極限)例如知道Xn與Xn+1的關(guān)系,已知Xn的極限存在的情況下,Xn的極限與Xn+1的極限是一樣的,應(yīng)為極限去掉有限項目極限值不變化。

  10、兩個重要極限的應(yīng)用。

  這兩個很重要!對第一個而言是x趨近0時候的sinx與x比值。第2個就如果x趨近無窮大無窮小都有對有對應(yīng)的形式(第二個實際上是用于函數(shù)是1的無窮的形式)(當(dāng)?shù)讛?shù)是1的時候要特別注意可能是用第二個重要極限)

  11、還有個方法,非常方便的方法。

  就是當(dāng)趨近于無窮大時候,不同函數(shù)趨近于無窮的速度是不一樣的。x的x次方快于x!,快于指數(shù)函數(shù),快于冪數(shù)函數(shù),快于對數(shù)函數(shù)(畫圖也能看出速率的快慢)。當(dāng)x趨近無窮的時候他們的比值的極限一眼就能看出來了

  12、換元法

  是一種技巧,不會對某一道題目而言就只需要換元,但是換元會夾雜其中

  13、假如要算的話四則運(yùn)算法則也算一種方法,當(dāng)然也是夾雜其中的。

  14、還有對付數(shù)列極限的一種方法,就是當(dāng)你面對題目實在是沒有辦法走投無路的時候可以考慮轉(zhuǎn)化為定積分。一般是從0到1的形式。

  15、單調(diào)有界的性質(zhì)

  對付遞推數(shù)列時候使用證明單調(diào)性。

  16、直接使用求導(dǎo)數(shù)的定義來求極限

  (一般都是x趨近于0時候,在分子上f(x)加減某個值)加減f(x)的形式,看見了有特別注意)(當(dāng)題目中告訴你F(0)=0時,f(0)的導(dǎo)數(shù)=0的時候就是暗示你一定要用導(dǎo)數(shù)定義!)


【考研數(shù)學(xué)一最后40天沖刺必看的核心點】相關(guān)文章:

考研數(shù)學(xué)最后沖刺階段的復(fù)習(xí)關(guān)鍵點12-12

考研數(shù)學(xué)一沖刺階段的知識點復(fù)習(xí)技巧12-04

考研英語作文沖刺必看的加分句12-14

考研數(shù)學(xué)最后階段的沖刺計劃12-12

考研最后沖刺數(shù)學(xué)常見的錯誤12-12

考研最后沖刺階段的備考攻略12-13

考研英語最后沖刺的復(fù)習(xí)攻略12-15

考研英語最后沖刺階段的建議12-07

考研數(shù)學(xué)最后沖刺的復(fù)習(xí)指導(dǎo)12-20