av手机免费在线观看,国产女人在线视频,国产xxxx免费,捆绑调教一二三区,97影院最新理论片,色之久久综合,国产精品日韩欧美一区二区三区

初一

初一上冊數(shù)學知識點

時間:2022-01-08 19:19:35 初一 我要投稿

初一上冊數(shù)學知識點合集

  在日常過程學習中,相信大家一定都接觸過知識點吧!知識點在教育實踐中,是指對某一個知識的泛稱。還在苦惱沒有知識點總結嗎?以下是小編整理的初一上冊數(shù)學知識點,歡迎閱讀,希望大家能夠喜歡!

初一上冊數(shù)學知識點合集

  初一上冊數(shù)學知識點 篇1

  1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

  2、三角形的分類

  3、三角形的三邊關系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

  快速判定方法:

  1)不等邊三角形:最小兩個邊之和大于第三個邊,就能組成三角形。

  2)等腰三角形:兩腰之和大于底,就能組成三角形。

  3)等邊三角形:肯定能組成。

  4、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

  5、中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

  6、角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

  7、高線、中線、角平分線的畫法

  8、三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個性質(zhì)叫三角形的穩(wěn)定性。

  9、三角形內(nèi)角和定理:三角形三個內(nèi)角的和等于180°

  推論1直角三角形的兩個銳角互余;推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角和;推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;三角形的內(nèi)角和是外角和的一半。

  10、三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角(六選三原則)

  11、三角形外角的性質(zhì)

 。1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;

 。2)三角形的一個外角等于與它不相鄰的兩個內(nèi)角和;

 。3)三角形的一個外角大于與它不相鄰的任一內(nèi)角;

 。4)三角形的外角和是360°。

  初一上冊數(shù)學知識點 篇2

  有理數(shù)的乘方

  (1)求相同因數(shù)的積的運算叫做乘方。乘方運算的結果叫冪。

  一般地,記作,讀作:a的n次方,表示n個a相乘;其中,a是底數(shù),n是指數(shù),稱為冪。

 。2)正數(shù)的任何次冪都是正數(shù)。

  負數(shù)的奇數(shù)次冪是負數(shù),

  負數(shù)的偶數(shù)次冪是正數(shù)。

  (3)一個數(shù)的平方為它本身,這個數(shù)是0和1;

  一個數(shù)的立方為它本身,這個數(shù)是0、1和—1。

  初一上冊數(shù)學知識點 篇3

  同類項的概念:

  所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。幾個常數(shù)項也叫同類項。

  判斷幾個單項式或項,是否是同類項的兩個標準:

 、偎帜赶嗤

  ②相同字母的次數(shù)也相同。

  判斷同類項時與系數(shù)無關,與字母排列的順序也無關。

  合并同類項的概念:

  把多項式中的同類項合并成一項叫做合并同類項。

  合并同類項的法則:

  同類項的系數(shù)相加,所得結果作為系數(shù),字母和字母的指數(shù)不變。

  合并同類項步驟:

 。1)準確的找出同類項。

  (2)逆用分配律,把同類項的系數(shù)加在一起(用小括號),字母和字母的指數(shù)不變。

  (3)寫出合并后的結果。

  合并同類項時注意:

 。1)如果兩個同類項的系數(shù)互為相反數(shù),合并同類項后,結果為0

  (2)不要漏掉不能合并的項。

 。3)只要不再有同類項,就是結果(可能是單項式,也可能是多項式)。

 。4)不是同類項千萬不能進行合并。

  初一上冊數(shù)學知識點 篇4

  三角和的三角函數(shù):

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ—sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ—cosα·sinβ·sinγ—sinα·cosβ·sinγ—sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ—tanα·tanβ·tanγ)/(1—tanα·tanβ—tanβ·tanγ—tanγ·tanα)

  初一上冊數(shù)學知識點 篇5

  (一)多姿多彩的圖形

  立體圖形:棱柱、棱錐、圓柱、圓錐、球等。

  1、幾何圖形

  平面圖形:三角形、四邊形、圓等。

  主(正)視圖—————————從正面看

  2、幾何體的三視圖 側(左、右)視圖—————從左(右)邊看

  俯視圖———————————————從上面看

 。1)會判斷簡單物體(直棱柱、圓柱、圓錐、球)的三視圖。

  (2)能根據(jù)三視圖描述基本幾何體或?qū)嵨镌汀?/p>

  3、立體圖形的平面展開圖

  (1)同一個立體圖形按不同的方式展開,得到的平現(xiàn)圖形不一樣的。

 。2)了解直棱柱、圓柱、圓錐、的平面展開圖,能根據(jù)展開圖判斷和制作立體模型。

  4、點、線、面、體

  (1)幾何圖形的組成

  點:線和線相交的地方是點,它是幾何圖形最基本的圖形。

  線:面和面相交的地方是線,分為直線和曲線。

  面:包圍著體的是面,分為平面和曲面。

  體:幾何體也簡稱體。

 。2)點動成線,線動成面,面動成體。

 。ǘ┲本、射線、線段

  1、基本概念

  圖形 直線 射線 線段

  端點個數(shù) 無 一個 兩個

  表示法 直線a

  直線AB(BA) 射線AB 線段a

  線段AB(BA)

  作法敘述 作直線AB;

  作直線a 作射線AB 作線段a;

  作線段AB;

  連接AB

  延長敘述 不能延長 反向延長射線AB 延長線段AB;

  反向延長線段BA

  2、直線的性質(zhì)

  經(jīng)過兩點有一條直線,并且只有一條直線。

  簡單地:兩點確定一條直線。

  3、畫一條線段等于已知線段

  (1)度量法

 。2)用尺規(guī)作圖法

  4、線段的大小比較方法

 。1)度量法

 。2)疊合法

  5、線段的中點(二等分點)、三等分點、四等分點等

  定義:把一條線段平均分成兩條相等線段的點。

  圖形:

  A M B

  符號:若點M是線段AB的中點,則AM=BM=AB,AB=2AM=2BM。

  6、線段的性質(zhì)

  兩點的所有連線中,線段最短。簡單地:兩點之間,線段最短。

  7、兩點的距離

  連接兩點的線段長度叫做兩點的距離。

  8、點與直線的位置關系

 。1)點在直線上

 。2)點在直線外。

 。ㄈ┙

  1、角:由公共端點的兩條射線所組成的圖形叫做角。

  2、角的表示法(四種):

  3、角的度量單位及換算

  4、角的分類

  ∠β、銳角、直角、鈍角、平角、周角

  范圍0<∠β<90°、∠β=90°、90°<∠β<180°、∠β=180°、∠β=360°

  5、角的比較方法

  (1)度量法

 。2)疊合法

  6、角的和、差、倍、分及其近似值

  7、畫一個角等于已知角

 。1)借助三角尺能畫出15°的倍數(shù)的角,在0~180°之間共能畫出11個角。

 。2)借助量角器能畫出給定度數(shù)的角。

 。3)用尺規(guī)作圖法。

  8、角的平線線

  定義:從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線叫做角的平分線。

  圖形:

  符號:

  9、互余、互補

 。1)若∠1+∠2=90°,則∠1與∠2互為余角。其中∠1是∠2的余角,∠2是∠1的余角。

  (2)若∠1+∠2=180°,則∠1與∠2互為補角。其中∠1是∠2的補角,∠2是∠1的補角。

 。3)余(補)角的性質(zhì):等角的補(余)角相等。

  10、方向角

  (1)正方向

 。2)北(南)偏東(西)方向

 。3)東(

  初一上冊數(shù)學知識點 篇6

  實數(shù):—有理數(shù)與無理數(shù)統(tǒng)稱為實數(shù)。

  有理數(shù):整數(shù)和分數(shù)統(tǒng)稱為有理數(shù)。

  無理數(shù):無理數(shù)是指無限不循環(huán)小數(shù)。

  自然數(shù):表示物體的個數(shù)0、1、2、3、4~(0包括在內(nèi))都稱為自然數(shù)。

  數(shù)軸:規(guī)定了圓點、正方向和單位長度的直線叫做數(shù)軸。

  相反數(shù):符號不同的兩個數(shù)互為相反數(shù)。

  倒數(shù):乘積是1的兩個數(shù)互為倒數(shù)。

  絕對值:數(shù)軸上表示數(shù)a的點與圓點的距離稱為a的絕對值。一個正數(shù)的絕對值是本身,一個負數(shù)的絕對值是它的相反數(shù),0的絕對值是0。

  初一上冊數(shù)學知識點 篇7

  一、代數(shù)初步知識。

  1、代數(shù)式:用運算符號“+—×÷……”連接數(shù)及表示數(shù)的字母的式子稱為代數(shù)式(字母所取得數(shù)應保證它所在的式子有意義,其次字母所取得數(shù)還應使實際生活或生產(chǎn)有意義;單獨一個數(shù)或一個字母也是代數(shù)式)

  2、列代數(shù)式的幾個注意事項:

 。1)數(shù)與字母相乘,或字母與字母相乘通常使用“?”乘,或省略不寫;

  (2)數(shù)與數(shù)相乘,仍應使用“×”乘,不用“?”乘,也不能省略乘號;

 。3)數(shù)與字母相乘時,一般在結果中把數(shù)寫在字母前面,如a×5應寫成5a;

 。4)帶分數(shù)與字母相乘時,要把帶分數(shù)改成假分數(shù)形式,如a×應寫成a;

  (5)在代數(shù)式中出現(xiàn)除法運算時,一般用分數(shù)線將被除式和除式聯(lián)系,如3÷a寫成的形式;

 。6)a與b的差寫作a—b,要注意字母順序;若只說兩數(shù)的差,當分別設兩數(shù)為a、b時,則應分類,寫做a—b和b—a、

  二、幾個重要的代數(shù)式(m、n表示整數(shù))。

  (1)a與b的平方差是:a2—b2;a與b差的平方是:(a—b)2;

 。2)若a、b、c是正整數(shù),則兩位整數(shù)是:10a+b,則三位整數(shù)是:100a+10b+c;

 。3)若m、n是整數(shù),則被5除商m余n的數(shù)是:5m+n;偶數(shù)是:2n,奇數(shù)是:2n+1;三個連續(xù)整數(shù)是:n—1、n、n+1;

  (4)若b>0,則正數(shù)是:a2+b,負數(shù)是:—a2—b,非負數(shù)是:a2,非正數(shù)是:—a2、

  三、有理數(shù)。

  1、有理數(shù):

 。1)凡能寫成形式的數(shù),都是有理數(shù)、正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù)、注意:0即不是正數(shù),也不是負數(shù);—a不一定是負數(shù),+a也不一定是正數(shù);π不是有理數(shù);

 。2)有理數(shù)的分類:①②

  (3)注意:有理數(shù)中,1、0、—1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;

  2、數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線、

  3、相反數(shù):

  (1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;

 。2)注意:a—b+c的相反數(shù)是—a+b—c;a—b的相反數(shù)是b—a;a+b的相反數(shù)是—a—b;

  4、絕對值:

  (1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;

  (2)絕對值可表示為:初一上冊知識點絕對值的問題經(jīng)常分類討論;

 。4)|a|是重要的非負數(shù),即|a|≥0;注意:|a|?|b|=|a?b|,

  5、有理數(shù)比大。

  (1)正數(shù)的絕對值越大,這個數(shù)越大;

 。2)正數(shù)永遠比0大,負數(shù)永遠比0小;

  (3)正數(shù)大于一切負數(shù);

  (4)兩個負數(shù)比大小,絕對值大的反而小;

 。5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;

 。6)大數(shù)—小數(shù)>0,小數(shù)—大數(shù)

  初一上冊數(shù)學知識點 篇8

  第一章:豐富的圖形世界

  1、幾何圖形

  從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。

  2、點、線、面、體

 、賻缀螆D形的組成

  點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。

  線:面和面相交的地方是線,分為直線和曲線。

  面:包圍著體的是面,分為平面和曲面。

  體:幾何體也簡稱體。

 、邳c動成線,線動成面,面動成體。

  3、生活中的立體圖形

  生活中的立體圖形(按名稱分)

  柱:

  ①圓柱

 、诶庵喝庵、四棱柱(長方體、正方體)、五棱柱、……

  錐:

 、賵A錐

 、诶忮F

  球

  4、棱柱及其有關概念:

  棱:在棱柱中,任何相鄰兩個面的交線,都叫做棱。

  側棱:相鄰兩個側面的交線叫做側棱。

  n棱柱有兩個底面,n個側面,共(n+2)個面;3n條棱,n條側棱;2n個頂點。

  5、正方體的平面展開圖:

  11種(經(jīng)?迹嚎荚囆问剑赫归_的圖形能否圍成正方體;正方體對面圖案)

  6、截一個正方體:

  用一個平面去截一個正方體,截出的面可能是三角形,四邊形,五邊形,六邊形。

  7、三視圖:

  物體的三視圖指主視圖、俯視圖、左視圖。

  主視圖:從正面看到的圖,叫做主視圖。

  左視圖:從左面看到的圖,叫做左視圖。

  俯視圖:從上面看到的圖,叫做俯視圖。

  第二章:有理數(shù)及其運算

  1、有理數(shù)的分類

 、僬欣頂(shù)

  有理數(shù){②零

 、圬撚欣頂(shù)

  有理數(shù){①整數(shù)

 、诜謹(shù)

  2、相反數(shù):

  只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零

  3、數(shù)軸:

  規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,三要素缺一不可)。任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。

  4、倒數(shù):

  如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和—1。零沒有倒數(shù)。

  5、絕對值:

  在數(shù)軸上,一個數(shù)所對應的點與原點的距離,叫做該數(shù)的絕對值,(|a|≥0)。

  若|a|=a,則a≥0;

  若|a|=—a,則a≤0。

  正數(shù)的絕對值是它本身;

  負數(shù)的絕對值是它的相反數(shù);

  0的絕對值是0。

  互為相反數(shù)的兩個數(shù)的絕對值相等。

  6、有理數(shù)比較大。

  正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù);

  數(shù)軸上的兩個點所表示的數(shù),右邊的總比左邊的大;

  兩個負數(shù),絕對值大的反而小。

  7、有理數(shù)的運算:

 、傥宸N運算:加、減、乘、除、乘方

  多個數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定,當負因數(shù)有奇數(shù)個時,積的符號為負;當負因數(shù)有偶數(shù)個時,積的符號為正。只要有一個數(shù)為零,積就為零。

  有理數(shù)加法法則:

  同號兩數(shù)相加,取相同的符號,并把絕對值相加。

  異號兩數(shù)相加,絕對值值相等時和為0;

  絕對值不相等時,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。

  一個數(shù)同0相加,仍得這個數(shù)。

  互為相反數(shù)的兩個數(shù)相加和為0。

  有理數(shù)減法法則:

  減去一個數(shù),等于加上這個數(shù)的相反數(shù)!

  有理數(shù)乘法法則:

  兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘。

  任何數(shù)與0相乘,積仍為0。

  有理數(shù)除法法則:

  兩個有理數(shù)相除,同號得正,異號得負,并把絕對值相除。

  0除以任何非0的數(shù)都得0。

  注意:0不能作除數(shù)。

  有理數(shù)的乘方:求n個相同因數(shù)a的積的運算叫做乘方。

  正數(shù)的任何次冪都是正數(shù),負數(shù)的偶次冪是正數(shù),負數(shù)的奇次冪是負數(shù)。

 、谟欣頂(shù)的運算順序

  先算乘方,再算乘除,最后算加減,如果有括號,先算括號里面的。

 、圻\算律(5種)

  加法交換律

  加法結合律

  乘法交換律

  乘法結合律

  乘法對加法的分配律

  8、科學記數(shù)法

  一般地,一個大于10的數(shù)可以表示成a×

  10n的形式,其中1≦n<10,n是正整數(shù),這種記數(shù)方法叫做科學記數(shù)法。(n=整數(shù)位數(shù)—1)

  第三章:整式及其加減

  1、代數(shù)式

  用運算符號(加、減、乘、除、乘方、開方等)把數(shù)或表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨的一個數(shù)或一個字母也是代數(shù)式。

  注意:

 、俅鷶(shù)式中除了含有數(shù)、字母和運算符號外,還可以有括號;

 、诖鷶(shù)式中不含有“=、>、<、≠”等符號。等式和不等式都不是代數(shù)式,但等號和不等號兩邊的式子一般都是代數(shù)式;

 、鄞鷶(shù)式中的字母所表示的數(shù)必須要使這個代數(shù)式有意義,是實際問題的要符合實際問題的意義。

  代數(shù)式的書寫格式:

 、俅鷶(shù)式中出現(xiàn)乘號,通常省略不寫,如vt;

  ②數(shù)字與字母相乘時,數(shù)字應寫在字母前面,如4a;

 、蹘Х謹(shù)與字母相乘時,應先把帶分數(shù)化成假分數(shù)。

 、軘(shù)字與數(shù)字相乘,一般仍用“×”號,即“×”號不省略;

 、菰诖鷶(shù)式中出現(xiàn)除法運算時,一般寫成分數(shù)的形式;注意:分數(shù)線具有“÷”號和括號的雙重作用。

  ⑥在表示和(或)差的代數(shù)式后有單位名稱的,則必須把代數(shù)式括起來,再將單位名稱寫在式子的后面。

  2、整式:單項式和多項式統(tǒng)稱為整式。

  ①單項式:

  都是數(shù)字和字母乘積的形式的代數(shù)式叫做單項式。單項式中,所有字母的指數(shù)之和叫做這個單項式的次數(shù);數(shù)字因數(shù)叫做這個單項式的系數(shù)。

  注意:

  單獨的一個數(shù)或一個字母也是單項式;

  單獨一個非零數(shù)的次數(shù)是0;

  當單項式的系數(shù)為1或—1時,這個“1”應省略不寫,如—ab的系數(shù)是—1,a3b的系數(shù)是1。

  ②多項式:

  幾個單項式的和叫做多項式。多項式中,每個單項式叫做多項式的項;次數(shù)最高的項的次數(shù)叫做多項式的次數(shù)。

 、弁愴棧

  所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。

  注意:

 、偻愴椨袃蓚條件:a、所含字母相同;b、相同字母的指數(shù)也相同。

 、谕愴椗c系數(shù)無關,與字母的排列順序無關;

 、蹘讉常數(shù)項也是同類項。

  4、合并同類項法則:

  把同類項的系數(shù)相加,字母和字母的指數(shù)不變。

  5、去括號法則

 、俑鶕(jù)去括號法則去括號:

  括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項都不改變符號;括號前面是“—”號,把括號和它前面的“—”號去掉,括號里各項都改變符號。

 、诟鶕(jù)分配律去括號:

  括號前面是“+”號看成+1,括號前面是“—”號看成—1,根據(jù)乘法的分配律用+1或—1去乘括號里的每一項以達到去括號的目的。

  6、添括號法則

  添“+”號和括號,添到括號里的各項符號都不改變;添“—”號和括號,添到括號里的各項符號都要改變。

  7、整式的運算:

  整式的加減法:

  (1)去括號;

  (2)合并同類項。

  第四章基本平面圖形

  1、線段、射線、直線

  名稱

  表示方法

  端點

  長度

  直線

  直線AB(或BA)

  直線l

  無端點

  無法度量

  射線

  射線OM

  1個

  無法度量

  線段

  線段AB(或BA)

  線段l

  2個

  可度量長度

  2、直線的性質(zhì)

 、僦本公理:經(jīng)過兩個點有且只有一條直線。(兩點確定一條直線。)

  ②過一點的直線有無數(shù)條。

  ③直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。

  3、線段的性質(zhì)

 、倬段公理:兩點之間的所有連線中,線段最短。(兩點之間線段最短。)

 、趦牲c之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。

 、劬段的大小關系和它們的長度的大小關系是一致的。

  4、線段的中點:

  點M把線段AB分成相等的兩條相等的線段AM與BM,點M叫做線段AB的中點。AM = BM =1/2AB (或AB=2AM=2BM)。

  5、角:

  有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊。或:角也可以看成是一條射線繞著它的端點旋轉而成的。

  6、角的表示

  角的表示方法有以下四種:

 、儆脭(shù)字表示單獨的角,如∠1,∠2,∠3等。

  ②用小寫的希臘字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。

  ③用一個大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠B,∠C等。

  ④用三個大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。

  注意:用三個大寫字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側。

  7、角的度量

  角的度量有如下規(guī)定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。

  把1°的角60等分,每一份叫做1分的角,1分記作“1’”。

  把1’的角60等分,每一份叫做1秒的角,1秒記作“1””。

  1°=60’,1’=60”

  8、角的平分線

  從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

  9、角的性質(zhì)

 、俳堑拇笮∨c邊的長短無關,只與構成角的兩條射線的幅度大小有關。

 、诮堑拇笮】梢远攘,可以比較,角可以參與運算。

  10、平角和周角:

  一條射線繞著它的端點旋轉,當終邊和始邊成一條直線時,所形成的角叫做平角。

  終邊繼續(xù)旋轉,當它又和始邊重合時,所形成的角叫做周角。

  11、多邊形:

  由若干條不在同一條直線上的線段首尾順次相連組成的封閉平面圖形叫做多邊形。

  連接不相鄰兩個頂點的線段叫做多邊形的對角線。

  從一個n邊形的同一個頂點出發(fā),分別連接這個頂點與其余各頂點,可以畫(n—3)條對角線,把這個n邊形分割成(n—2)個三角形。

  12、圓:

  平面上,一條線段繞著一個端點旋轉一周,另一個端點形成的圖形叫做圓。

  固定的端點O稱為圓心,線段OA的長稱為半徑的長(通常簡稱為半徑)。

  圓上任意兩點A、B間的部分叫做圓弧,簡稱弧,讀作“圓弧AB”或“弧AB”;

  由一條弧AB和經(jīng)過這條弧的端點的兩條半徑OA、OB所組成的圖形叫做扇形。

  頂點在圓心的角叫做圓心角。

  第五章一元一次方程

  1、方程

  含有未知數(shù)的等式叫做方程。

  2、方程的解

  能使方程左右兩邊相等的未知數(shù)的值叫做方程的解。

  3、等式的性質(zhì)

 、俚仁降膬蛇呁瑫r加上(或減去)同一個代數(shù)式,所得結果仍是等式。

 、诘仁降膬蛇呁瑫r乘以同一個數(shù)((或除以同一個不為0的數(shù)),所得結果仍是等式。

  4、一元一次方程

  只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1的整式方程叫做一元一次方程。

  5、移項:

  把方程中的某一項,改變符號后,從方程的一邊移到另一邊,這種變形叫做移項。

  6、解一元一次方程的一般步驟:

 、偃シ帜

  ②去括號

 、垡祈棧ò逊匠讨械哪骋豁椄淖兎柡,從方程的一邊移到另一邊,這種變形叫移項。)

 、芎喜⑼愴

  ⑤將未知數(shù)的系數(shù)化為1

  第六章數(shù)據(jù)的收集與整理

  1、普查與抽樣調(diào)查

  為了特定目的對全部考察對象進行的全面調(diào)查,叫做普查。

  其中被考察對象的全體叫做總體,組成總體的每一個被考察對象稱為個體。

  從總體中抽取部分個體進行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體抽取的一部分個體叫做總體的一個樣本。

  2、扇形統(tǒng)計圖

  扇形統(tǒng)計圖:利用圓與扇形來表示總體與部分的關系,扇形的大小反映部分占總體的百分比的大小,這樣的統(tǒng)計圖叫做扇形統(tǒng)計圖。(各個扇形所占的百分比之和為1)

  圓心角度數(shù)=360°×該項所占的百分比。(各個部分的圓心角度數(shù)之和為360°)

  3、頻數(shù)直方圖

  頻數(shù)直方圖是一種特殊的條形統(tǒng)計圖,它將統(tǒng)計對象的數(shù)據(jù)進行了分組畫在橫軸上,縱軸表示各組數(shù)據(jù)的頻數(shù)。

  4、各種統(tǒng)計圖的特點

  條形統(tǒng)計圖:能清楚地表示出每個項目的具體數(shù)目。

  折線統(tǒng)計圖:能清楚地反映事物的變化情況。

  扇形統(tǒng)計圖:能清楚地表示出各部分在總體中所占的百分比。

  初一上冊數(shù)學知識點 篇9

  整式的乘法:

 、賳雾検脚c單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。

 、趩雾検脚c多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。

  ③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

  初一上冊數(shù)學知識點 篇10

  一、方程的有關概念

  1、方程:含有未知數(shù)的等式就叫做方程。

  2、一元一次方程:只含有一個未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程。例如: 1700+50x=1800,2(x+1.5x)=5等都是一元一次方程。

  3、方程的解:使方程中等號左右兩邊相等的未知數(shù)的值,叫做方程的解。

  注:

  ⑴方程的解和解方程是不同的概念,方程的解實質(zhì)上是求得的結果,它是一個數(shù)值(或幾個數(shù)值),而解方程的含義是指求出方程的解或判斷方程無解的過程。

  ⑵方程的解的檢驗方法,首先把未知數(shù)的值分別代入方程的左、右兩邊計算它們的值,其次比較兩邊的值是否相等從而得出結論。

  二、等式的性質(zhì)

  等式的性質(zhì)(1):等式兩邊都加上(或減去)同個數(shù)(或式子),結果仍相等。

  等式的性質(zhì)(1)用式子形式表示為:如果a=b,那么a±c=b±c

  等式的性質(zhì)(2):等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結果仍相等,等式的性質(zhì)(2)用式子形式表示為:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb

  三、移項法則:把等式一邊的某項變號后移到另一邊,叫做移項。

  四、去括號法則

  1、括號外的因數(shù)是正數(shù),去括號后各項的符號與原括號內(nèi)相應各項的符號相同。

  2、括號外的因數(shù)是負數(shù),去括號后各項的符號與原括號內(nèi)相應各項的符號改變。

  五、解方程的一般步驟

  1、去分母(方程兩邊同乘各分母的最小公倍數(shù))

  2、去括號(按去括號法則和分配律)

  3、移項(把含有未知數(shù)的項移到方程一邊,其他項都移到方程的另一邊,移項要變號)

  4、合并(把方程化成ax=b(a≠0)形式)

  5、系數(shù)化為1(在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解x=a(b)。

  六、用方程思想解決實際問題的一般步驟

  1、審:審題,分析題中已知什么,求什么,明確各數(shù)量之間的關系。

  2、設:設未知數(shù)(可分直接設法,間接設法)

  3、列:根據(jù)題意列方程。

  4、解:解出所列方程。

  5、檢:檢驗所求的解是否符合題意。

  6、答:寫出答案(有單位要注明答案)

  初一上冊數(shù)學知識點 篇11

  整式加減由數(shù)到式,承前啟后,既是有理數(shù)的概括與抽象,又是整式乘除和其他代數(shù)式運算的基礎,也是學習方程、不等式和函數(shù)的基礎。為了體現(xiàn)本章知識的特殊地位與作用,具有以下幾個特點:

  1、充分體現(xiàn)由特殊到一般,由一般到特殊的思維過程,經(jīng)歷探索數(shù)量關系和變化規(guī)律的過程,滲透辯證唯物主義思想。

  2、知識呈現(xiàn)過程盡量做到與學生已有生活經(jīng)驗密切聯(lián)系,如皮球的彈跳高度,傳數(shù)游戲等,發(fā)展學生應用數(shù)學的意識和能力。

  3、讓知識的發(fā)生、發(fā)展過程得以充分暴露,重視基本知識和基本技能的學習。

  4、注意發(fā)揮例題和習題的教育功能。加強學科間的縱向聯(lián)系并注意與其他學科的橫向聯(lián)系,擴充學生的知識面,注意適當插入一些開放題,培養(yǎng)發(fā)散思維,適時滲透美育和德育教育。

  知識要點。整式的有關概念

 。1)單項式:表示數(shù)與字母的乘積的代數(shù)式,叫做單項式,單獨的一個數(shù)或一個字母也是單項式,如、2πr、a,0……都是單項式。

 。2)多項式:幾個單項式的和叫做多項式。

  初一上冊數(shù)學知識點 篇12

  一、線段、射線、直線

  ※1、正確理解直線、射線、線段的概念以及它們的區(qū)別:

  名稱圖形表示方法端點長度

  直線直線AB(或BA)

  直線l無端點無法度量

  射線射線OM1個無法度量

  線段線段AB(或BA)

  線段l2個可度量長度

  ※2、直線公理:經(jīng)過兩點有且只有一條直線。

  二、比較線段的長短

  ※1、線段公理:兩點間線段最短;兩之間線段的長度叫做這兩點之間的距離。

  ※2、比較線段長短的兩種方法:

 、賵A規(guī)截取比較法;

  ②刻度尺度量比較法。

  ※3、用刻度尺可以畫出線段的中點,線段的和、差、倍、分;

  用圓規(guī)可以畫出線段的和、差、倍。

  三、角的度量與表示

  ※1、角:有公共端點的兩條射線組成的圖形叫做角;

  這個公共端點叫做角的頂點;

  這兩條射線叫做角的邊。

  ※2、角的表示法:角的符號為“∠”

  初一上冊數(shù)學知識點 篇13

  1、某工作,甲單獨干需用15小時完成,乙單獨干需用12小時完成,若甲先干1小時、乙又單獨干4小時,剩下的工作兩人合作,問:再用幾小時可全部完成任務?

  2、某工廠計劃26小時生產(chǎn)一批零件,后因每小時多生產(chǎn)5件,用24小時,不但完成了任務,而且還比原計劃多生產(chǎn)了60件,問原計劃生產(chǎn)多少零件?

  3、某高校共有5個大餐廳和2個小餐廳。經(jīng)過測試:同時開放1個大餐廳、2個小餐廳,可供1680名學生就餐;同時開放2個大餐廳、1個小餐廳,可供2280名學生就餐。

 。1)求1個大餐廳、1個小餐廳分別可供多少名學生就餐;

 。2)若7個餐廳同時開放,能否供全校的5300名學生就餐?請說明理由。

  4、甲乙兩件衣服的成本共500元,商店老板為獲取利潤,決定將家服裝按50%的利潤定價,乙服裝按40%的利潤定價,在實際銷售時,應顧客要求,兩件服裝均按9折出售,這樣商店共獲利157元,求甲乙兩件服裝成本各是多少元?

  初一上冊數(shù)學知識點 篇14

  本章的主要內(nèi)容可以概括為有理數(shù)的概念與有理數(shù)的運算兩部分。有理數(shù)的概念可以利用數(shù)軸來認識、理解,同時,利用數(shù)軸又可以把這些概念串在一起。有理數(shù)的運算是全章的重點。在具體運算時,要注意四個方面,一是運算法則,二是運算律,三是運算順序,四是近似計算。

  基礎知識:

  1、正數(shù)(positionnumber):大于0的數(shù)叫做正數(shù)。

  2、負數(shù)(negationnumber):在正數(shù)前面加上負號"—"的數(shù)叫做負數(shù)。

  3、0既不是正數(shù)也不是負數(shù)。

  4、有理數(shù)(rationalnumber):正整數(shù)、負整數(shù)、0、正分數(shù)、負分數(shù)都可以寫成分數(shù)的形式,這樣的數(shù)稱為有理數(shù)。

  5、數(shù)軸(numberaxis):通常,用一條直線上的點表示數(shù),這條直線叫做數(shù)軸。

  數(shù)軸滿足以下要求:

 。1)在直線上任取一個點表示數(shù)0,這個點叫做原點(origin);

  (2)通常規(guī)定直線上從原點向右(或上)為正方向,從原點向左(或下)為負方向;

 。3)選取適當?shù)拈L度為單位長度。

  6、相反數(shù)(oppositenumber):絕對值相等,只有負號不同的兩個數(shù)叫做互為相反數(shù)。

  7、絕對值(absolutevalue)一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值。記做|a|。由絕對值的定義可得:|a—b|表示數(shù)軸上a點到b點的距離。一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);0的絕對值是0。正數(shù)大于0,0大于負數(shù),正數(shù)大于負數(shù);兩個負數(shù),絕對值大的反而小。

  8、有理數(shù)加法法則

 。1)同號兩數(shù)相加,取相同的符號,并把絕對值相加。

 。2)絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;橄喾磾(shù)的兩個數(shù)相加得0。

 。3)一個數(shù)同0相加,仍得這個數(shù)。

  加法交換律:有理數(shù)的加法中,兩個數(shù)相加,交換加數(shù)的位置,和不變。表達式:a+b=b+a。

  加法結合律:有理數(shù)的加法中,三個數(shù)相加,先把前兩個數(shù)相加或者先把后兩個數(shù)相加,和不變。

  表達式:(a+b)+c=a+(b+c)

  9、有理數(shù)減法法則:減去一個數(shù),等于加這個數(shù)的相反數(shù)。表達式:a—b=a+(—b)

  10、有理數(shù)乘法法則

  兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘。

  任何數(shù)同0相乘,都得0。

  乘法交換律:一般地,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等。表達式:ab=ba

  乘法結合律:三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。表達式:(ab)c=a(bc)

  乘法分配律:一般地,一個數(shù)同兩個的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,再把積相加。

  表達式:a(b+c)=ab+ac

  11、倒數(shù)

  1除以一個數(shù)(零除外)的商,叫做這個數(shù)的倒數(shù)。如果兩個數(shù)互為倒數(shù),那么這兩個數(shù)的積等于1。

  12、有理數(shù)除法法則:兩數(shù)相除,同號得負,異號得正,并把絕對值相除。0除以任何一個不等于0的數(shù),都得0。

  13、有理數(shù)的乘方:求n個相同因數(shù)的積的運算,叫做乘方,乘方的結果叫做冪(power)。an中,a叫做底數(shù)(basenumber),n叫做指數(shù)(exponent)。

  根據(jù)有理數(shù)的乘法法則可以得出:負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù)。正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都是0。

  14、有理數(shù)的混合運算順序

 。1)"先乘方,再乘除,最后加減"的順序進行;

 。2)同級運算,從左到右進行;

 。3)如有括號,先做括號內(nèi)的運算,按小括號、中括號、大括號依次進行。

  15、科學技術法:把一個大于10的數(shù)表示成a?10n的形式(其中a是整數(shù)數(shù)位只有一位的數(shù)(即0

  16、近似數(shù)(approximatenumber):

  17、有理數(shù)可以寫成m/n(m、n是整數(shù),n≠0)的形式。另一方面,形如m/n(m、n是整數(shù),n≠0)的數(shù)都是有理數(shù)。所以有理數(shù)可以用m/n(m、n是整數(shù),n≠0)表示。

  拓展知識:

  1、數(shù)集:把一些數(shù)放在一起,就組成一個數(shù)的集合,簡稱數(shù)集。

  (1)所有有理數(shù)組成的數(shù)集叫做有理數(shù)集;

  (2)所有的整數(shù)組成的數(shù)集叫做整數(shù)集。

  2、任何有理數(shù)都可以用數(shù)軸上的一個點來表示,體現(xiàn)了數(shù)形結合的數(shù)學思想。

  3、根據(jù)絕對值的幾何意義知道:|a|≥0,即對任何有理數(shù)a,它的絕對值是非負數(shù)。

  4、比較兩個有理數(shù)大小的方法有:

 。1)根據(jù)有理數(shù)在數(shù)軸上對應的點的位置直接比較;

  (2)根據(jù)規(guī)定進行比較:兩個正數(shù);正數(shù)與零;負數(shù)與零;正數(shù)與負數(shù);兩個負數(shù),體現(xiàn)了分類討論的數(shù)學思想;

 。3)做差法:a—b>0——a>b;

 。4)做商法:a/b>1,b>0——a>b。

  初一上冊數(shù)學知識點 篇15

  直線:一條拉緊的細線向兩方無限延伸就是直線。

  直線表示法

 、賰纱髮懽帜阜ㄈ缰本AB或直線BA(字母無順序性)

 、谛懽帜阜ㄈ缰本a

  直線特征:

  ①直線向兩方無限延伸

 、谥本沒有粗細不能度量長短。

 、蹆牲c確定一條直線

  ④兩直線相交只有一個交點。

 、葜本無端點但有無數(shù)個點

  點與直線的位置關系:

  ①點在直線上(也可說直線經(jīng)過點)

 、邳c在直線外(也可說直線不經(jīng)過點)

  直線公理:過兩點有一條直線,并且只有一條直線。(兩點確定一條直線)

  初一上冊數(shù)學知識點 篇16

  1、數(shù)軸:規(guī)定了原點、正方向和單位長度的直線叫數(shù)軸。

  2、畫數(shù)軸的步驟:

 、女嬕粭l直線。

 、七x取原點、正方向。

 、且(guī)定單位長度。

 、葦(shù)軸上用短豎標出刻度。

 、蓴(shù)軸下用標出數(shù)值。

  3、數(shù)軸三要素:原點、正方向和單位長度

  4、數(shù)軸特點:一般地,設a是一個正數(shù),則數(shù)軸上表示數(shù)a的點在原點的右邊,與原點的距離是a個單位長度;表示數(shù)-a的點在原點的左邊,與原點的距離是a個單位長度。

  5、數(shù)軸上點與有理數(shù)關系:每一個有理數(shù)都可以用數(shù)軸上的一個點來表示;但數(shù)軸上的點不都表示有理數(shù)。

  初一上冊數(shù)學知識點 篇17

  平面圖形及其位置關系

  1、線段:繃緊的琴弦,人行橫道線都可以近似的看做線段。線段有兩個端點。

  2、射線:將線段向一個方向無限延長就形成了射線。射線有一個端點。

  3、直線:將線段向兩個方向無限延長就形成了直線。直線沒有端點。

  4、點、直線、射線和線段的表示

  在幾何里,我們常用字母表示圖形。

  一個點可以用一個大寫字母表示。

  一條直線可以用一個小寫字母表示或用直線上兩個點的大寫字母表示。

  一條射線可以用一個小寫字母表示或用端點和射線上另一點來表示(端點字母寫在前面)。

  一條線段可以用一個小寫字母表示或用它的.端點的兩個大寫字母來表示。

  5、點和直線的位置關系有兩種:

 、冱c在直線上,或者說直線經(jīng)過這個點。

 、邳c在直線外,或者說直線不經(jīng)過這個點。

  6、直線的性質(zhì)

 。1)直線公理:經(jīng)過兩個點有且只有一條直線。

 。2)過一點的直線有無數(shù)條。

 。3)直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。

 。4)直線上有無窮多個點。

 。5)兩條不同的直線至多有一個公共點。

  7、線段的性質(zhì)

  (1)線段公理:兩點之間的所有連線中,線段最短。

  (2)兩點之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。

  (3)線段的中點到兩端點的距離相等。

 。4)線段的大小關系和它們的長度的大小關系是一致的。

  初一上冊數(shù)學知識點 篇18

  七年級上冊數(shù)學知識點總結之有理數(shù)及其運算板塊:

  1、整數(shù)包含正整數(shù)和負整數(shù),分數(shù)包含正分數(shù)和負分數(shù)。正整數(shù)和正分數(shù)通稱為正數(shù),負整數(shù)和負分數(shù)通稱為負數(shù)。

  2、正整數(shù)、0、負整數(shù)、正分數(shù)、負分數(shù)這樣的數(shù)稱為有理數(shù)。

  3、絕對值:數(shù)軸上一個數(shù)所對應的點與原點的距離叫做該數(shù)的絕對值,用“||”表示。

  七年級上冊數(shù)學知識點總結之整式板塊:

  1、單項式:由數(shù)與字母的乘積組成的式子叫做單項式。

  2、單項式的次數(shù):一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。

  3、整式:單項式與多項式統(tǒng)稱整式。

  4、同類項:字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。

  七年級上冊數(shù)學知識點總結之一元一次方程。

  1、含有未知數(shù)的等式叫做方程,使方程左右兩邊的值都相等的未知數(shù)的值叫做方程的解。

  2、移項:把等式一邊的某項變號后移到另一邊,叫做移項等。

  其實,七年級上冊數(shù)學知識點總結還包括很多,但是我想,萬變不離其宗。

  大家平時要注意整理與積累。配合多加練習。一些知識要點及時記錄在筆記本上,一些錯題也要及時整理、復習。一個個知識點去通過。我相信只要做個有心人,就可以在數(shù)學考試中取得高分。

  初一上冊數(shù)學知識點 篇19

  1定義

  在平面內(nèi),如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸,并且對稱軸用點畫線表示;這時,我們也說這個圖形關于這條直線對稱。比如說圓、正方形、等腰三角形、等邊三角形、等腰梯形等。

  2舉例

  例如等腰三角形、正方形、等邊三角形、等腰梯形和圓和正多邊形都是軸對 稱圖形.有的軸對稱圖形有不止一條對稱軸,但軸對稱圖形最少有一條對稱軸。圓有無數(shù)條對稱軸,都是經(jīng)過圓心的直線。

  要特別注意的是線段,它有兩條對稱軸,一條是這條線段所在的直線,另一條是這條線段的中垂線。

  3性質(zhì)

  1.對稱軸是一條直線。

  2.垂直并且平分一條線段的直線稱為這條線段的垂直平分線,或中垂線。線段垂直平分線上的點到線段兩端的距離相等。

  3.在軸對稱圖形中,對稱軸兩側的對應點到對稱軸兩側的距離相等。

  4.在軸對稱圖形中,沿對稱軸將它對折,左右兩邊完全重合。

  5.如果兩個圖形關于某條直線對稱,那么對稱軸是任何一對對應點所連線段的垂直平分線

  6.圖形對稱。

  定理

  定理1:關于某條直線對稱的兩個圖形是全等形。

  定理2:如果兩個圖形關于某條直線對稱,那么對稱軸是對應點連線的垂直平分線。

  定理3:兩個圖形關于某條直線對稱,如果對稱軸和某兩條對稱線段的延長線相交,那么交點在對稱軸上。

  定理3的逆定理:如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱。

  生活作用

  1、為了美觀,比如天安門,對稱就顯的美觀漂亮;

  2、保持平衡,比如飛機的兩翼;

  3、特殊工作的需要,比如五角星,剪紙

  初一上冊數(shù)學知識點 篇20

  本章內(nèi)容要求學生正確認識有理數(shù)的概念,在實際生活和學習數(shù)軸的基礎上,理解正負數(shù)、相反數(shù)、絕對值的意義所在。重點利用有理數(shù)的運算法則解決實際問題,體驗數(shù)學發(fā)展的一個重要原因是生活實際的需要。

  一、目標與要求

  1.了解正數(shù)與負數(shù)是從實際需要中產(chǎn)生的。

  2.能正確判斷一個數(shù)是正數(shù)還是負數(shù),明確0既不是正數(shù)也不是負數(shù)。

  3.理解有理數(shù)除法的意義,熟練掌握有理數(shù)除法法則,會進行有理數(shù)的除法運算;

  4.了解倒數(shù)概念,會求給定有理數(shù)的倒數(shù);

  5.通過將除法運算轉化為乘法運算,培養(yǎng)學生的轉化的思想;通過有理數(shù)的除法

  二、重點

  正、負數(shù)的概念;

  正確理解數(shù)軸的概念和用數(shù)軸上的點表示有理數(shù);

  有理數(shù)的加法法則;

  除法法則和除法運算。

  三、難點

  負數(shù)的概念、正確區(qū)分兩種不同意義的量;

  數(shù)軸的概念和用數(shù)軸上的點表示有理數(shù);

  異號兩數(shù)相加的法則;

  根據(jù)除法是乘法的逆運算,歸納出除法法則及商的符號的確定。

  四、知識框架

  五、知識點、概念總結

  1.正數(shù):比0大的數(shù)叫正數(shù)。

  2.負數(shù):比0小的數(shù)叫負數(shù)。

  3.有理數(shù):

  (1)凡能寫成q/p(p,q為整數(shù)且p不等于0)形式的數(shù),都是有理數(shù)。正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù)。

  注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);p不是有理數(shù);

  (2)有理數(shù)的分類:

  4.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線。

  5.相反數(shù):

  (1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;

  (2)相反數(shù)的和為0等價于a+b=0等價于a、b互為相反數(shù)。

  6.絕對值:

  (1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);

  注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;

  (2)絕對值可表示為:

  絕對值的問題經(jīng)常分類討論;

  7.有理數(shù)比大。

  (1)正數(shù)的絕對值越大,這個數(shù)越大;

  (2)正數(shù)永遠比0大,負數(shù)永遠比0小;

  (3)正數(shù)大于一切負數(shù);

  (4)兩個負數(shù)比大小,絕對值大的反而小;

  (5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;

  (6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.

  8.互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);

  注意:0沒有倒數(shù);若a≠0,那么a的倒數(shù)是1/a;若ab=1等價于a、b互為倒數(shù);若ab=-1等價于a、b互為負倒數(shù)。

  9. 有理數(shù)加法法則:

  (1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;

  (2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;10.有理數(shù)加法的運算律:

  (1)加法的交換律:a+b=b+a ;

  (2)加法的結合律:(a+b)+c=a+(b+c)。

  11.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b)。

  12.有理數(shù)乘法法則:

  (1)兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘;

  (2)任何數(shù)同零相乘都得零;

  (3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數(shù)決定。

  13. 有理數(shù)乘法的運算律:

  (1)乘法的交換律:ab=ba;

  (2)乘法的結合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac 。

  14.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),即a/0無意義。

  15.有理數(shù)乘方的法則:

  (1)正數(shù)的任何次冪都是正數(shù);

  (2)負數(shù)的奇次冪是負數(shù);負數(shù)的偶次冪是正數(shù);注意:當n為正奇數(shù)時:(-a)n=-an或(a-b)n=-(b-a)n ,當n為正偶數(shù)時:(-a)n =an 或(a-b)n=(b-a)n 。

  16.乘方的定義:

  (1)求相同因式積的運算,叫做乘方;

  (2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結果叫做冪;

  17.科學記數(shù)法:

  把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學記數(shù)法。

  18.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位。

  19.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字。

  20.混合運算法則:先乘方,后乘除,最后加減。

  (參考教材:初中數(shù)學七年級人教版)

  練習:

  1.若密云水庫的水位比標準水位高出3cm記為+3cm,某月的水位記錄中顯示,1日水位為-5cm,2日水位為-1cm,3日水位為+4cm,則( )

  A.1日與2日水位相差6cm B.1日與3日水位相差1cm C.2日與3日水位相差5cm D.均不正確

  2.籃球的質(zhì)量,超過標準質(zhì)量的克數(shù)記為正數(shù),不足標準質(zhì)量的克數(shù)記為負數(shù),檢查的結果如下表:

  最接近標準質(zhì)量的是_________號籃球;質(zhì)量最大的籃球比質(zhì)量最小的籃球重____________克.

  3.判斷:1)最小的自然數(shù)是1;2)最小的整數(shù)是1;3)一個有理數(shù)的倒數(shù)等于它本身,則這個數(shù)是1。

  (3)一個數(shù)與0相加,仍得這個數(shù)。

【初一上冊數(shù)學知識點合集】相關文章:

初一上冊數(shù)學《數(shù)軸》知識點10-03

初一上冊數(shù)學知識點最新09-10

初一上冊數(shù)學知識點大全01-07

初一數(shù)學上冊知識點最新整理12-07

初一數(shù)學上冊知識點科教版08-25

數(shù)學上冊知識點08-02

初一上冊數(shù)學知識點15篇09-09

人教版初一數(shù)學上冊知識點歸納總結11-24

初一上冊數(shù)學圖形認識初步知識點10-04