av手机免费在线观看,国产女人在线视频,国产xxxx免费,捆绑调教一二三区,97影院最新理论片,色之久久综合,国产精品日韩欧美一区二区三区

數(shù)學中考知識點

時間:2023-06-29 19:15:35 興亮 中考備考 我要投稿

數(shù)學中考知識點

  在日常的學習中,是不是經(jīng)常追著老師要知識點?知識點就是一些常考的內(nèi)容,或者考試經(jīng)常出題的地方。那么,都有哪些知識點呢?下面是小編收集整理的數(shù)學中考知識點,僅供參考,大家一起來看看吧。

數(shù)學中考知識點

  數(shù)學中考知識點 1

  中考數(shù)學知識點:分式混合運算法則

  分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;變號必須兩處,結果要求最簡.

  分式混合運算法則:

  分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);

  乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;

  加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;

  變號必須兩處,結果要求最簡.

  中考數(shù)學二次根式的加減法知識點總結

  二次根式的加減法

  知識點1:同類二次根式

  (Ⅰ)幾個二次根式化成最簡二次根式以后,如果被開方數(shù)相同,這幾個二次根式叫做同類二次根式,如這樣的二次根式都是同類二次根式。

  (Ⅱ)判斷同類二次根式的方法:

  (1)首先將不是最簡形式的二次根式化為最簡二次根式以后,再看被開方數(shù)是否相同。

  (2)幾個二次根式是否是同類二次根式,只與被開方數(shù)及根指數(shù)有關,而與根號外的因式無關。

  知識點2:合并同類二次根式的方法

  合并同類二次根式的理論依據(jù)是逆用乘法對加法的分配律,合并同類二次根式,只把它們的系數(shù)相加,根指數(shù)和被開方數(shù)都不變,不是同類二次根式的不能合并。

  知識點3:二次根式的加減法則

  二次根式相加減先把各個二次根式化成最簡二次根式,再把同類二次根式合并,合并的方法為系數(shù)相加,根式不變。

  知識點4:二次根式的混合運算方法和順序

  運算方法是利用加、減、乘、除法則以及與多項式乘法類似法則進行混合運算。運算的順序是先乘方,后乘除,最后加減,有括號的先算括號內(nèi)的。

  知識點5:二次根式的加減法則與乘除法則的區(qū)別

  乘除法中,系數(shù)相乘,被開方數(shù)相乘,與兩根式是否是同類根式無關,加減法中,系數(shù)相加,被開方數(shù)不變而且兩根式須是同類最簡根式。

  中考數(shù)學知識點:直角三角形

  重點解直角三角形

  內(nèi)容提要

  一、三角函數(shù)

  1.定義:在Rt△ABC中,∠C=Rt∠,則sinA=;cosA=;tgA=;ctgA=.

  2.特殊角的三角函數(shù)值:

  0°30°45°60°90°

  sinα

  cosα

  tgα/

  ctgα/

  3.互余兩角的三角函數(shù)關系:sin(90°-α)=cosα;…

  4.三角函數(shù)值隨角度變化的關系

  5.查三角函數(shù)表

  二、解直角三角形

  1.定義:已知邊和角(兩個,其中必有一邊)→所有未知的邊和角。

  2.依據(jù):①邊的關系:

  ②角的關系:A+B=90°

 、圻吔顷P系:三角函數(shù)的定義。

  注意:盡量避免使用中間數(shù)據(jù)和除法。

  三、對實際問題的處理

  1.俯、仰角:2.方位角、象限角:3.坡度:

  4.在兩個直角三角形中,都缺解直角三角形的條件時,可用列方程的辦法解決。

  數(shù)學中考知識點 2

  數(shù)軸特點:一般地,設a是一個正數(shù),則數(shù)軸上表示數(shù)a的點在原點的右邊,與原點的距離是a個單位長度;表示數(shù)-a的點在原點的左邊,與原點的距離是a個單位長度。

  數(shù)軸上點與有理數(shù)關系:每一個有理數(shù)都可以用數(shù)軸上的一個點來表示;

  但數(shù)軸上的點不都表示有理數(shù)。

  注意:不能出現(xiàn)相同長度表示的不等的量。數(shù)軸兩端不能畫點。

  數(shù)學中考知識點 3

  知識點1:一元二次方程的基本概念

  1.一元二次方程3x2+5x-2=0的常數(shù)項是-2.

  2.一元二次方程3x2+4x-2=0的一次項系數(shù)為4,常數(shù)項是-2.

  3.一元二次方程3x2-5x-7=0的二次項系數(shù)為3,常數(shù)項是-7.

  4.把方程3x(x-1)-2=-4x化為一般式為3x2-x-2=0.

  知識點2:直角坐標系與點的位置

  1.直角坐標系中,點A(3,0)在軸上。

  2.直角坐標系中,x軸上的任意點的橫坐標為0.

  3.直角坐標系中,點A(1,1)在第一象限。

  4.直角坐標系中,點A(-2,3)在第四象限。

  5.直角坐標系中,點A(-2,1)在第二象限。

  知識點3:已知自變量的值求函數(shù)值

  1.當x=2時,函數(shù)=的值為1.

  2.當x=3時,函數(shù)=的值為1.

  3.當x=-1時,函數(shù)=的值為1.

  知識點4:基本函數(shù)的概念及性質(zhì)

  1.函數(shù)=-8x是一次函數(shù)。

  2.函數(shù)=4x+1是正比例函數(shù)。

  3.函數(shù)是反比例函數(shù)。

  4.拋物線=-3(x-2)2-5的開口向下。

  5.拋物線=4(x-3)2-10的對稱軸是x=3.

  6.拋物線的頂點坐標是(1,2)。

  7.反比例函數(shù)的圖象在第一、三象限

  知識點5:特殊的數(shù)據(jù)

  1.數(shù)據(jù)13,10,12,8,7的平均數(shù)是10.

  2.數(shù)據(jù)3,4,2,4,4的眾數(shù)是4.

  3.數(shù)據(jù)1,2,3,4,5的中位數(shù)是3.

  知識點6:特殊三角函數(shù)值

  1.cs30°=。

  2.sin260°+cs260°=1.

  3.2sin30°+tan45°=2.

  4.tan45°=1.

  5.cs60°+sin30°=1.

  知識點7:圓的基本性質(zhì)

  1.半圓或直徑所對的圓周角是直角。

  2.任意一個三角形一定有一個外接圓。

  3.在同一平面內(nèi),到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓。

  4.在同圓或等圓中,相等的圓心角所對的弧相等。

  5.同弧所對的圓周角等于圓心角的一半。

  6.同圓或等圓的半徑相等。

  7.過三個點一定可以作一個圓。

  8.長度相等的兩條弧是等弧。

  9.在同圓或等圓中,相等的圓心角所對的弧相等。

  10.經(jīng)過圓心平分弦的直徑垂直于弦。

  知識點8:直線與圓的位置關系

  1.直線與圓有唯一公共點時,叫做直線與圓相切。

  2.三角形的外接圓的圓心叫做三角形的外心。

  3.弦切角等于所夾的弧所對的圓心角。

  4.三角形的內(nèi)切圓的圓心叫做三角形的內(nèi)心。

  5.垂直于半徑的直線必為圓的切線。

  6.過半徑的外端點并且垂直于半徑的直線是圓的切線。

  7.垂直于半徑的直線是圓的切線。

  8.圓的切線垂直于過切點的半徑。

  數(shù)學中考知識點 4

  直角三角形的判定方法:

  判定1:定義,有一個角為90°的三角形是直角三角形。

  判定2:判定定理:以a、b、c為邊的三角形是以c為斜邊的直角三角形。如果三角形的三邊a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形。(勾股定理的逆定理)。

  判定3:若一個三角形30°內(nèi)角所對的邊是某一邊的一半,則這個三角形是以這條長邊為斜邊的直角三角形。

  判定4:兩個銳角互為余角(兩角相加等于90°)的三角形是直角三角形。

  判定5:若兩直線相交且它們的斜率之積互為負倒數(shù),則兩直線互相垂直。那么

  判定6:若在一個三角形中一邊上的中線等于其所在邊的一半,那么這個三角形為直角三角形。

  判定7:一個三角形30°角所對的邊等于這個三角形斜邊的一半,則這個三角形為直角三角形。(與判定3不同,此定理用于已知斜邊的三角形。)

  三角形的外心定義:

  外心:是三角形三條邊的垂直平分線的交點,即外接圓的圓心。

  外心定理:三角形的三邊的垂直平分線交于一點。該點叫做三角形的外心。

  三角形的外心的性質(zhì):

  1.三角形三條邊的垂直平分線的交于一點,該點即為三角形外接圓的圓心;

  2三角形的外接圓有且只有一個,即對于給定的三角形,其外心是的,但一個圓的內(nèi)接三角形卻有無數(shù)個,這些三角形的外心重合;

  3.銳角三角形的外心在三角形內(nèi);

  鈍角三角形的外心在三角形外;

  直角三角形的外心與斜邊的中點重合。

  在△ABC中

  4.OA=OB=OC=R

  5.∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA

  數(shù)學中考知識點 5

  實數(shù)與數(shù)軸

  1、數(shù)軸:規(guī)定了原點、正方向、單位長度的直線稱為數(shù)軸。

  原點、正方向、單位長度是數(shù)軸的三要素。

  2、數(shù)軸上的點和實數(shù)的對應關系:數(shù)軸上的每一個點都表示一個實數(shù),而每一個實數(shù)都可以用數(shù)軸上的唯一的點來表示。

  實數(shù)和數(shù)軸上的點是一一對應的關系。

  相信上面對數(shù)學中實數(shù)與數(shù)軸知識點的內(nèi)容總結學習,可以很好的幫助同學們對此知識點的鞏固學習吧,希望同學們會學習的更好。

  中考數(shù)學知識點之實數(shù)大小的比較

  下面是對數(shù)學的學習中,關于實數(shù)大小的比較知識學習,希望同學們很好的掌握。

  實數(shù)大小的比較

  1、在數(shù)軸上表示兩個數(shù),右邊的數(shù)總比左邊的數(shù)大。

  2、正數(shù)大于0;負數(shù)小于0;正數(shù)大于一切負數(shù);兩個負數(shù)絕對值大的反而小。

  相信上面對數(shù)學中實數(shù)大小的比較知識點的講解學習之后,同學們對上面的知識已經(jīng)能很好的掌握了吧,希望同學們都能考試成功。

  中考數(shù)學知識點之實數(shù)中的幾個概念

  關于數(shù)學中隊友實數(shù)中的幾個概念知識,我們做下面的講解學習,相信可以很好的幫助同學們的學習。

  實數(shù)中的幾個概念

  1、相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù)。

 。1)實數(shù)a的相反數(shù)是 -a;

 。2)a和b互為相反數(shù) a+b=0

  2、倒數(shù):

 。1)實數(shù)a(a≠0)的倒數(shù)是 ;

  (2)a和b 互為倒數(shù) ;

  (3)注意0沒有倒數(shù)

  3、絕對值:

  (1)一個數(shù)a 的絕對值有以下三種情況:

 。2)實數(shù)的絕對值是一個非負數(shù),從數(shù)軸上看,一個實數(shù)的絕對值,就是數(shù)軸上表示這個數(shù)的點到原點的距離。

 。3)去掉絕對值符號(化簡)必須要對絕對值符號里面的實數(shù)進行數(shù)性(正、負)確認,再去掉絕對值符號。

  4、n次方根

 。1)平方根,算術平方根:設a≥0,稱 叫a的平方根, 叫a的算術平方根。

 。2)正數(shù)的平方根有兩個,它們互為相反數(shù);0的平方根是0;負數(shù)沒有平方根。

 。3)立方根: 叫實數(shù)a的立方根。

 。4)一個正數(shù)有一個正的立方根;0的立方根是0;一個負數(shù)有一個負的立方根。

  通過上面對實數(shù)中的幾個概念知識點的內(nèi)容總結學習,希望同學們都能很好的掌握上面的知識點,相信同學們會從中學習的更好的。

  中考數(shù)學知識點之實數(shù)的分類

  下面是對數(shù)學中實數(shù)的分類知識點的內(nèi)容講解學習,希望同學們對下面的知識點都能很好的掌握。

  實數(shù)的分類:

  1、有理數(shù):任何一個有理數(shù)總可以寫成 的形式,其中p、q是互質(zhì)的整數(shù),這是有理數(shù)的重要特征。

  2、無理數(shù):初中遇到的無理數(shù)有三種:開不盡的方根,如 、 ;特定結構的不限環(huán)無限小數(shù),如1.101001000100001……;特定意義的數(shù),如π、 °等。

  3、判斷一個實數(shù)的數(shù)性不能僅憑表面上的感覺,往往要經(jīng)過整理化簡后才下結論。

  以上對數(shù)學中實數(shù)的分類知識點的內(nèi)容總結學習,相信同學們已經(jīng)能很好的掌握了吧,希望同學們考試成功。

  初中數(shù)學三角形內(nèi)角定理知識點講解

  以下是對數(shù)學中三角形內(nèi)角定理知識的內(nèi)容講解學習,相信可以很好的幫助同學們對此知識點的鞏固學習吧。

  三角形內(nèi)角定理

  定理:三角形兩邊的和大于第三邊

  推論:三角形兩邊的差小于第三邊

  三角形內(nèi)角和定理:三角形三個內(nèi)角的和等于180°

  推論1:直角三角形的兩個銳角互余

  推論2:三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和

  推論3:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角

  通過上面對數(shù)學中三角形內(nèi)角定理知識點的講解學習,相信可以很好的幫助同學們對此知識的學習了吧,希望同學們都能考試成功。

  初中數(shù)學平行定理知識點講解

  如果一組等距的平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等。

  平行定理

  平行定理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行

  推論:如果兩條直線都和第三條直線平行,這兩條直線也互相平行

  證明兩直線平行定理:

  同位角相等,兩直線平行

  內(nèi)錯角相等,兩直線平行

  同旁內(nèi)角互補,兩直線平行

  兩直線平行推論:

  兩直線平行,同位角相等

  數(shù)學中考知識點 6

  單項式與多項式

  僅含有一些數(shù)和字母的乘法(包括乘方)運算的式子叫做單項式單獨的一個數(shù)或字母也是單項式。

  單項式中的數(shù)字因數(shù)叫做這個單項式(或字母因數(shù))的數(shù)字系數(shù),簡稱系數(shù)。

  當一個單項式的系數(shù)是1或-1時,“1”通常省略不寫。

  一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。

  如果在幾個單項式中,不管它們的系數(shù)是不是相同,只要他們所含的字母相同,并且相同字母的指數(shù)也分別相同,那么,這幾個單項式就叫做同類單項式,簡稱同類項所有的常數(shù)都是同類項。

  1、多項式

  有有限個單項式的代數(shù)和組成的式子,叫做多項式。

  多項式里每個單項式叫做多項式的項,不含字母的項,叫做常數(shù)項。

  單項式可以看作是多項式的特例

  把同類單項式的系數(shù)相加或相減,而單項式中的字母的乘方指數(shù)不變。

  在多項式中,所含的不同未知數(shù)的個數(shù),稱做這個多項式的元數(shù)經(jīng)過合并同類項后,多項式所含單項式的個數(shù),稱為這個多項式的項數(shù)所含個單項式中次項的次數(shù),就稱為這個多項式的次數(shù)。

  2、多項式的值

  任何一個多項式,就是一個用加、減、乘、乘方運算把已知數(shù)和未知數(shù)連接起來的式子。

  3、多項式的恒等

  對于兩個一元多項式f(x)、g(x)來說,當未知數(shù)x同取任一個數(shù)值a時,如果它們所得的值都是相等的,即f(a)=g(a),那么,這兩個多項式就稱為是恒等的記為f(x)==g(x),或簡記為f(x)=g(x)。

  性質(zhì)1如果f(x)==g(x),那么,對于任一個數(shù)值a,都有f(a)=g(a)。

  性質(zhì)2如果f(x)==g(x),那么,這兩個多項式的個同類項系數(shù)就一定對應相等。

  數(shù)學中考知識點 7

  多項式和單項式一起被稱為整式,整式的運算離不開加法,多項式也是如此。

  多項式的加法

  有限個單項式之和稱為多元多項式,簡稱多項式。不同類的單項式之和表示的多項式,其中系數(shù)不為零的單項式的最高次數(shù),稱為此多項式的次數(shù)。

  多項式的加法,是指多項式中同類項的系數(shù)相加,字母保持不變(即合并同類項)。多項式的乘法,是指把一個多項式中的每個單項式與另一個多項式中的每個單項式相乘之后合并同類項。

  F上x1,x2,…,xn的多項式全體所成的集合F[x1,x2,…,xn],對于多項式的加法和乘法成為一個環(huán),是具有單位元素的整環(huán)。 域上的多元多項式也有因式分解惟一性定理。

  關于多項式的加法計算的中考知識要領已經(jīng)為大家整合出來了,請同學們相應做好筆記了。

  數(shù)學中考知識點 8

  一、數(shù)與式

  易錯點1:有理數(shù)、無理數(shù)以及實數(shù)的有關概念理解錯誤,相反數(shù)、倒數(shù)、絕對值的意義概念混淆。以及絕對值與數(shù)的分類。每年選擇必考。

  易錯點2:實數(shù)的運算要掌握好與實數(shù)有關的概念、性質(zhì),靈活地運用各種運算律,關鍵是把好符號關;在較復雜的運算中,不注意運算順序或者不合理使用運算律,從而使運算出現(xiàn)錯誤。

  易錯點3:平方根、算術平方根、立方根的區(qū)別。填空題必考。

  易錯點4:求分式值為零時學生易忽略分母不能為零。

  易錯點5:分式運算時要注意運算法則和符號的變化。當分式的分子分母是多項式時要先因式分解,因式分解要分解到不能再分解為止,注意計算方法,不能去分母,把分式化為最簡分式。填空題必考。

  易錯點6:非負數(shù)的性質(zhì):幾個非負數(shù)的和為0,每個式子都為0;整體代入法;完全平方式。

  易錯點7:計算第一題必考。五個基本數(shù)的計算:0指數(shù),三角函數(shù),絕對值,負指數(shù),二次根式的化簡。

  易錯點8:科學記數(shù)法。精確度,有效數(shù)字。這個上海還沒有考過,知道就好!

  易錯點9:代入求值要使式子有意義。各種數(shù)式的計算方法要掌握,一定要注意計算順序。

  二、方程(組)與不等式(組)

  易錯點1:各種方程(組)的解法要熟練掌握,方程(組)無解的意義是找不到等式成立的條件。

  易錯點2:運用等式性質(zhì)時,兩邊同除以一個數(shù)必須要注意不能為0的情況,還要關注解方程與方程組的基本思想。(消元降次)主要陷阱是消除了一個帶X公因式要回頭檢驗!

  易錯點3:運用不等式的性質(zhì)3時,容易忘記改不改變符號的方向而導致結果出錯。

  易錯點4:關于一元二次方程的取值范圍的題目易忽視二次項系數(shù)不為0導致出錯。

  易錯點5:關于一元一次不等式組有解無解的條件易忽視相等的情況。

  易錯點6:解分式方程時首要步驟去分母,分數(shù)相相當于括號,易忘記根檢驗,導致運算結果出錯。

  易錯點7:不等式(組)的解得問題要先確定解集,確定解集的方法運用數(shù)軸。

  易錯點8:利用函數(shù)圖象求不等式的解集和方程的解

  易錯點6:與坐標軸交點坐標一定要會求。面積最大值的求解方法,距離之和的最小值的求解方法,距離之差最大值的求解方法。

  易錯點7:數(shù)形結合思想方法的運用,還應注意結合圖像性質(zhì)解題。函數(shù)圖象與圖形結合學會從復雜圖形分解為簡單圖形的方法,圖形為圖像提供數(shù)據(jù)或者圖像為圖形提供數(shù)據(jù)。

  易錯點8:自變量的取值范圍有:二次根式的被開方數(shù)是非負數(shù),分式的分母不為0,0指數(shù)底數(shù)不為0,其它都是全體實數(shù)。

  三、三角形

  易錯點1:三角形的概念以及三角形的角平分線,中線,高線的特征與區(qū)別。

  易錯點2:三角形三邊之間的不等關系,注意其中的“任何兩邊”。最短距離的方法。

  易錯點3:三角形的內(nèi)角和,三角形的分類與三角形內(nèi)外角性質(zhì),特別關注外角性質(zhì)中的“不相鄰”。

  易錯點4:全等形,全等三角形及其性質(zhì),三角形全等判定。著重學會論證三角形全等,三角形相似與全等的綜合運用以及線段相等是全等的特征,線段的倍分是相似的特征以及相似與三角函數(shù)的結合。邊邊角兩個三角形不一定全等。

  易錯點5:兩個角相等和平行經(jīng)常是相似的基本構成要素,以及相似三角形對應高之比等于相似比,對應線段成比例,面積之比等于相似比的平方。

  易錯點6:等腰(等邊)三角形的定義以及等腰(等邊)三角形的判定與性質(zhì),運用等腰(等邊)三角形的判定與性質(zhì)解決有關計算與證明問題,這里需注意分類討論思想的滲入。

  易錯點7:運用勾股定理及其逆定理計算線段的長,證明線段的數(shù)量關系,解決與面積有關的問題以及簡單的實際問題。

  易錯點8:將直角三角形,平面直角坐標系,函數(shù),開放性問題,探索性問題結合在一起綜合運用探究各種解題方法。

  易錯點9:中點,中線,中位線,一半定理的歸納以及各自的性質(zhì)。

  易錯點10:直角三角形判定方法:三角形面積的確定與底上的高(特別是鈍角三角形)。

  易錯點11:三角函數(shù)的定義中對應線段的比經(jīng)常出錯以及特殊角的三角函數(shù)值。

  數(shù)學中考知識點 9

  1.數(shù)軸

  (1)數(shù)軸的概念:規(guī)定了原點、正方向、單位長度的直線叫做數(shù)軸.

  數(shù)軸的三要素:原點,單位長度,正方向。

  (2)數(shù)軸上的點:所有的有理數(shù)都可以用數(shù)軸上的點表示,但數(shù)軸上的點不都表示有理數(shù).(一般取右方向為正方向,數(shù)軸上的點對應任意實數(shù),包括無理數(shù).)

  (3)用數(shù)軸比較大。阂话銇碚f,當數(shù)軸方向朝右時,右邊的數(shù)總比左邊的數(shù)大。

  重點知識:

  初中數(shù)學第一課,認識正數(shù)與負數(shù)!新初一的來~

  2.相反數(shù)

  (1)相反數(shù)的概念:只有符號不同的兩個數(shù)叫做互為相反數(shù).

  (2)相反數(shù)的意義:掌握相反數(shù)是成對出現(xiàn)的,不能單獨存在,從數(shù)軸上看,除0外,互為相反數(shù)的兩個數(shù),它們分別在原點兩旁且到原點距離相等。

  (3)多重符號的化簡:與“+”個數(shù)無關,有奇數(shù)個“﹣”號結果為負,有偶數(shù)個“﹣”號,結果為正。

  (4)規(guī)律方法總結:求一個數(shù)的相反數(shù)的方法就是在這個數(shù)的前邊添加“﹣”,如a的相反數(shù)是﹣a,m+n的相反數(shù)是﹣(m+n),這時m+n是一個整體,在整體前面添負號時,要用小括號。

  3.絕對值

  1.概念:數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值。

 、倩橄喾磾(shù)的兩個數(shù)絕對值相等;

 、诮^對值等于一個正數(shù)的數(shù)有兩個,絕對值等于0的數(shù)有一個,沒有絕對值等于負數(shù)的數(shù).

 、塾欣頂(shù)的絕對值都是非負數(shù).

  數(shù)學中考知識點 10

  1、反比例函數(shù)的概念

  一般地,函數(shù)(k是常數(shù),k0)叫做反比例函數(shù)。反比例函數(shù)的解析式也可以寫成的形式。自變量x的取值范圍是x0的一切實數(shù),函數(shù)的取值范圍也是一切非零實數(shù)。

  2、反比例函數(shù)的圖像

  反比例函數(shù)的圖像是雙曲線,它有兩個分支,這兩個分支分別位于第一、三象限,或第二、四象限,它們關于原點對稱。由于反比例函數(shù)中自變量x0,函數(shù)y0,所以,它的圖像與x軸、y軸都沒有交點,即雙曲線的兩個分支無限接近坐標軸,但永遠達不到坐標軸。

  3、反比例函數(shù)的性質(zhì)

  反比例函數(shù)k的符號k>0k<0圖像yO xyO x性質(zhì)①x的取值范圍是x0,y的取值范圍是y0;

 、诋攌>0時,函數(shù)圖像的兩個分支分別

  在第一、三象限。在每個象限內(nèi),y隨x 的增大而減小。

 、賦的取值范圍是x0,y的取值范圍是y0;

 、诋攌<0時,函數(shù)圖像的兩個分支分別在第二、四象限。在每個象限內(nèi),y隨x 的增大而增大。

  4、反比例函數(shù)解析式的確定

  確定及誒是的方法仍是待定系數(shù)法。由于在反比例函數(shù)中,只有一個待定系數(shù),因此只需要一對對應值或圖像上的一個點的坐標,即可求出k的值,從而確定其解析式。

  5、反比例函數(shù)的幾何意義

  設是反比例函數(shù)圖象上任一點,過點P作軸、軸的垂線,垂足為A,則

  (1)△OPA的面積.

  (2)矩形OAPB的面積。這就是系數(shù)的幾何意義.并且無論P怎樣移動,△OPA的面積和矩形OAPB的面積都保持不變。

  矩形PCEF面積=,平行四邊形PDEA面積=

  數(shù)學中考知識點 11

  1、加法:

  (1)同號兩數(shù)相加,取原來的符號,并把它們的絕對值相加;

  (2)異號兩數(shù)相加,取絕對值大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值?墒褂眉臃ń粨Q律、結合律。

  2、減法:減去一個數(shù)等于加上這個數(shù)的相反數(shù)。

  3、乘法:

  (1)兩數(shù)相乘,同號取正,異號取負,并把絕對值相乘。

  (2)n個實數(shù)相乘,有一個因數(shù)為0,積就為0;若n個非0的實數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定,當負因數(shù)有偶數(shù)個時,積為正;當負因數(shù)為奇數(shù)個時,積為負。

  (3)乘法可使用乘法交換律、乘法結合律、乘法分配律。

  4、除法:

  (1)兩數(shù)相除,同號得正,異號得負,并把絕對值相除。

  (2)除以一個數(shù)等于乘以這個數(shù)的倒數(shù)。

  (3)0除以任何數(shù)都等于0,0不能做被除數(shù)。

  5、乘方與開方:乘方與開方互為逆運算。

  6、實數(shù)的運算順序:乘方、開方為三級運算,乘、除為二級運算,加、減是一級運算,如果沒有括號,在同一級運算中要從左到右依次運算,不同級的運算,先算高級的運算再算低級的運算,有括號的先算括號里的運算。無論何種運算,都要注意先定符號后運算。

  數(shù)學中考知識點 12

  1、加法:

 。1)同號兩數(shù)相加,取原來的符號,并把它們的絕對值相加;

  (2)異號兩數(shù)相加,取絕對值大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值?墒褂眉臃ń粨Q律、結合律。

  2、減法:減去一個數(shù)等于加上這個數(shù)的相反數(shù)。

  3、乘法:

 。1)兩數(shù)相乘,同號取正,異號取負,并把絕對值相乘。

 。2)n個實數(shù)相乘,有一個因數(shù)為0,積就為0;若n個非0的實數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定,當負因數(shù)有偶數(shù)個時,積為正;當負因數(shù)為奇數(shù)個時,積為負。

 。3)乘法可使用乘法交換律、乘法結合律、乘法分配律。

  4、除法:

  (1)兩數(shù)相除,同號得正,異號得負,并把絕對值相除。

  (2)除以一個數(shù)等于乘以這個數(shù)的倒數(shù)。

 。3)0除以任何數(shù)都等于0,0不能做被除數(shù)。

  5、乘方與開方:乘方與開方互為逆運算。

  6、實數(shù)的運算順序:乘方、開方為三級運算,乘、除為二級運算,加、減是一級運算,如果沒有括號,在同一級運算中要從左到右依次運算,不同級的運算,先算高級的運算再算低級的運算,有括號的先算括號里的運算。無論何種運算,都要注意先定符號后運算。

  通過上面對數(shù)學中實數(shù)的運算知識的講解學習,同學們都能很好的掌握了吧,希望同學們在考試中取得理想的成績哦。

  數(shù)學中考知識點 13

  新初三學生已經(jīng)開學一個月的時間了,學生開始面臨中考的壓力,在所有學科中,很多學生最擔心的就是數(shù)學成績的提高,不少學生早早的開始了中考數(shù)學的復習。但如何讓中考數(shù)學復習能夠有效果呢?復習可以通過掌握以下幾個關鍵,來提升自己的成績。

  一、模擬訓練關鍵是選好模擬試題,要按照初中畢業(yè)生學業(yè)考試說明要求,結合中考數(shù)學試卷的結構特點和命題趨勢,選擇真正具有模擬性的模擬試題。時間的安排,題量的多少,低、中、高檔題的比例,總體難度的控制等都要符合中考要求。

  二、模擬測試后,要及時對答案,趁熱打鐵,有利于及時查漏補缺,復習效果明顯提高。同事要對自己做的卷子評分,嚴格按照中考評分要求,以便掌握自身的復習水平。

  三、留給自己一定的糾錯和消化時間。教師講過的內(nèi)容,要整理下來;教師沒講的自己解錯的題要糾錯;與之相關的基礎知識要再記憶再鞏固。

  四、適當?shù)摹敖夥拧,特別是在時間安排上。經(jīng)過一段時間的考、考、考,幾乎所有的學生心身都會感到疲勞,如果把這種疲勞的狀態(tài)帶進中考考場,那肯定是個較差的結果。但要注意,解放不是放松,必須保證有個適度緊張的精神狀態(tài)。實踐證明,適度緊張是正常或者超常發(fā)揮的最佳狀態(tài)。調(diào)節(jié)的生物鐘,盡量把學習、思考的時間調(diào)整得與中考答卷時間相吻合,關注的心態(tài)和信心調(diào)整,此時此刻學生的信心的作用變?yōu)榱俗畲蟆?/p>

  數(shù)學中考知識點 14

  整式與分式

  整式:

 、贁(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。

  ②一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。

 、垡粋多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。

  整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。

  冪的運算:AM+AN=A(M+N)

  (AM)N=AMN

 。ˋ/B)N=AN/BN 除法一樣。

  整式的乘法:

 、賳雾検脚c單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。

 、趩雾検脚c多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。

 、鄱囗検脚c多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

  公式兩條:平方差公式/完全平方公式

  整式的除法:

 、賳雾検较喑严禂(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。

 、诙囗検匠詥雾検,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

  分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。

  方法:提公因式法、運用公式法、分組分解法、十字相乘法。

  分式:

 、僬紸除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。

  ②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。

  分式的運算:

  乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

  除法:除以一個分式等于乘以這個分式的倒數(shù)。

  加減法:

 、偻帜傅姆质较嗉訙p,分母不變,把分子相加減。

 、诋惙帜傅姆质较韧ǚ,化為同分母的分式,再加減。

  分式方程:

 、俜帜钢泻形粗獢(shù)的方程叫分式方程。

 、谑狗匠痰姆帜笧0的解稱為原方程的增根。

  同學們對上面老師講解的知識都很好的掌握了吧,希望通過上面對整式與分式知識的學習,同學們能從中學習的更好。

  數(shù)學中考知識點 15

  橢圓知識:平面內(nèi)與兩定點F1、F2的距離的和等于常數(shù)2a(2a>|F1F2|)的動點P的軌跡叫做橢圓。

  橢圓的第一定義

  即:│PF1│+│PF2│=2a

  其中兩定點F1、F2叫做橢圓的焦點,兩焦點的距離│F1F2│=2c<2a叫做橢圓的焦距。P 為橢圓的動點。

  長軸為 2a; 短軸為 2b。

  橢圓的第二定義

  平面內(nèi)到定點F的距離與到定直線的距離之比為常數(shù)e(即橢圓的離心率,e=c/a)的點的集合(定點F不在定直線上,該常數(shù)為小于1的正數(shù)) 其中定點F為橢圓的焦點,定直線稱為橢圓的準線(該定直線的方程是x=±a^2/c[焦點在X軸上];或者y=±a^2/c[焦點在Y軸上])。

  橢圓的其他定義

  根據(jù)橢圓的一條重要性質(zhì),也就是橢圓上的點與橢圓短軸兩端點連線的斜率之積是定值 定值為e^2-1 可以得出:平面內(nèi)與兩定點的連線的斜率之積是常數(shù)k的動點的軌跡是橢圓,此時k應滿足一定的條件,也就是排除斜率不存在的情況,還有K應滿足<0且不等于-1。

  簡單幾何性質(zhì)

  1、范圍

  2、對稱性:關于X軸對稱,Y軸對稱,關于原點中心對稱。

  3、頂點:(當中心為原點時)(a,0)(-a,0)(0,b)(0,-b)

  4、離心率:e=c/a

  5、離心率范圍 0

  知識歸納:離心率越大橢圓就越扁,越小則越接近于圓。

  初中數(shù)學知識點總結:平面直角坐標系

  平面直角坐標系

  平面直角坐標系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。

  平面直角坐標系的要素:

 、僭谕黄矫

  ②兩條數(shù)軸

 、刍ハ啻怪

 、茉c重合

  三個規(guī)定:

  ①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向

 、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。

 、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  初中數(shù)學知識點:平面直角坐標系的構成

  平面直角坐標系的構成

  在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。

  初中數(shù)學知識點:點的坐標的性質(zhì)

  點的坐標的性質(zhì)

  建立了平面直角坐標系后,對于坐標系平面內(nèi)的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內(nèi)確定它所表示的一個點。

  對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數(shù)對(a,b)叫做點C的坐標。

  一個點在不同的象限或坐標軸上,點的坐標不一樣。

  希望上面對點的坐標的性質(zhì)知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。

  初中數(shù)學知識點:因式分解的一般步驟

  因式分解的一般步驟

  如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

  通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結果,必須是幾個整式的積的形式。

  初中數(shù)學知識點:因式分解

  因式分解

  因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

  因式分解要素:

  ①結果必須是整式

 、诮Y果必須是積的形式

 、劢Y果是等式

 、芤蚴椒纸馀c整式乘法的關系:m(a+b+c)

  公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

  公因式確定方法:

 、傧禂(shù)是整數(shù)時取各項最大公約數(shù)。

  ②相同字母取最低次冪

 、巯禂(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。

  提取公因式步驟:

 、俅_定公因式。

 、诖_定商式

  ③公因式與商式寫成積的形式。

  分解因式注意;

 、俨粶蕘G字母

  ②不準丟常數(shù)項注意查項數(shù)

  ③雙重括號化成單括號

 、芙Y果按數(shù)單字母單項式多項式順序排列

  ⑤相同因式寫成冪的形式

 、奘醉椮撎柗爬ㄌ柾

  ⑦括號內(nèi)同類項合并。

  數(shù)學中考知識點 16

 、糯箯蕉ɡ恚捍怪庇谙业闹睆狡椒诌@條弦,并且平分弦所對的2條弧。

  逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的2條弧。

 、朴嘘P圓周角和圓心角的性質(zhì)和定理

 、 在同圓或等圓中,如果兩個圓心角,兩個圓周角,兩組弧,兩條弦,兩條弦心距中有一組量相等,那么他們所對應的其余各組量都分別相等。

  ②一條弧所對的圓周角等于它所對的圓心角的一半。

  直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。

  圓心角計算公式: θ=(L/2πr)×360°=180°L/πr=L/r(弧度)

  即圓心角的度數(shù)等于它所對的弧的度數(shù);圓周角的度數(shù)等于它所對的弧的度數(shù)的一半。

 、 如果一條弧的長是另一條弧的2倍,那么其所對的圓周角和圓心角是另一條弧的2倍。

 、怯嘘P外接圓和內(nèi)切圓的性質(zhì)和定理

 、僖粋三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形三個頂點距離相等;

 、趦(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點,到三角形三邊距離相等。

 、跼=2S△÷L(R:內(nèi)切圓半徑,S:三角形面積,L:三角形周長)

 、軆上嗲袌A的連心線過切點(連心線:兩個圓心相連的直線)

 、輬AO中的弦PQ的中點M,過點M任作兩弦AB,CD,弦AD與BC分別交PQ于X,Y,則M為XY之中點。

  (4)如果兩圓相交,那么連接兩圓圓心的線段(直線也可)垂直平分公共弦。

  (5)弦切角的度數(shù)等于它所夾的弧的度數(shù)的一半。

  (6)圓內(nèi)角的度數(shù)等于這個角所對的弧的度數(shù)之和的一半。

  (7)圓外角的度數(shù)等于這個角所截兩段弧的度數(shù)之差的一半。

  (8)周長相等,圓面積比長方形、正方形、三角形的面積大。

  數(shù)學中考知識點 17

  圓的定理:

  1、不在同一直線上的三點確定一個圓。

  2、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧。

  推論1

  ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。

 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧。

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧。

  推論2:圓的兩條平行弦所夾的弧相等。

  3、圓是以圓心為對稱中心的中心對稱圖形。

  4、圓是定點的距離等于定長的點的集合。

  5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合。

  6、圓的外部可以看作是圓心的距離大于半徑的點的集合。

  7、同圓或等圓的半徑相等。

  8、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓。

  9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等。

  10、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。

  圓的知識:

  平面上一條線段,繞它的一端旋轉360°,留下的軌跡叫圓。

  圓心:

  (1)如定義(1)中,該定點為圓心

  (2)如定義(2)中,繞的那一端的端點為圓心。

  (3)圓任意兩條對稱軸的交點為圓心。

  (4)垂直于圓內(nèi)任意一條弦且兩個端點在圓上的線段的二分點為圓心。

  注:圓心一般用字母O表示

  直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。

  半徑:連接圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。

  圓的直徑和半徑都有無數(shù)條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=d/2。

  圓的半徑或直徑?jīng)Q定圓的大小,圓心決定圓的位置。

  圓的周長:圍成圓的曲線的長度叫做圓的周長,用字母C表示。

  圓的周長與直徑的比值叫做圓周率。

  圓的周長除以直徑的商是一個固定的數(shù),把它叫做圓周率,它是一個無限不循環(huán)小數(shù)(無理數(shù)),用字母π表示。計算時,通常取它的近似值,π≈3.14。

  直徑所對的圓周角是直角。90°的圓周角所對的弦是直徑。

  圓的面積公式:圓所占平面的大小叫做圓的面積。πr,用字母S表示。

  一條弧所對的圓周角是圓心角的二分之一。

  在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。

  在同圓或等圓中,如果兩條弧相等,那么他們所對的圓心角相等,所對的弦相等,所對的弦心距也相等。

  數(shù)學中考知識點 18

  三角函數(shù)關系

  倒數(shù)關系

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  商的關系

  sinα/cosα=tanα=secα/cscα

  cosα/sinα=cotα=cscα/secα

  平方關系

  sin^2(α)+cos^2(α)=1

  1+tan^2(α)=sec^2(α)

  1+cot^2(α)=csc^2(α)

  同角三角函數(shù)關系六角形記憶法

  構造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。

  倒數(shù)關系

  對角線上兩個函數(shù)互為倒數(shù);

  商數(shù)關系

  六邊形任意一頂點上的函數(shù)值等于與它相鄰的兩個頂點上函數(shù)值的乘積。(主要是兩條虛線兩端的三角函數(shù)值的乘積,下面4個也存在這種關系。)。由此,可得商數(shù)關系式。

  平方關系

  在帶有陰影線的三角形中,上面兩個頂點上的三角函數(shù)值的平方和等于下面頂點上的三角函數(shù)值的平方。

  銳角三角函數(shù)定義

  銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。

  正弦(sin)等于對邊比斜邊;sinA=a/c

  余弦(cos)等于鄰邊比斜邊;cosA=b/c

  正切(tan)等于對邊比鄰邊;tanA=a/b

  余切(cot)等于鄰邊比對邊;cotA=b/a

  正割(sec)等于斜邊比鄰邊;secA=c/b

  余割(csc)等于斜邊比對邊。cscA=c/a

  互余角的三角函數(shù)間的關系

  sin(90°-α)=cosα,cos(90°-α)=sinα,

  tan(90°-α)=cotα,cot(90°-α)=tanα.

  平方關系:

  sin^2(α)+cos^2(α)=1

  tan^2(α)+1=sec^2(α)

  cot^2(α)+1=csc^2(α)

  積的關系:

  sinα=tanα·cosα

  cosα=cotα·sinα

  tanα=sinα·secα

  cotα=cosα·cscα

  secα=tanα·cscα

  cscα=secα·cotα

  倒數(shù)關系:

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

【數(shù)學中考知識點】相關文章:

數(shù)學中考的知識點11-22

數(shù)學中考的知識點01-25

中考數(shù)學的知識點02-22

數(shù)學中考的知識點大全08-13

中考數(shù)學圓知識點07-22

數(shù)學中考知識點集錦07-28

中考數(shù)學必考的知識點07-21

中考數(shù)學最熱的知識點08-01

中考數(shù)學必考知識點01-27