高一數(shù)學知識點總結(jié)精華【15篇】
總結(jié)是指對某一階段的工作、學習或思想中的經(jīng)驗或情況進行分析研究,做出帶有規(guī)律性結(jié)論的書面材料,它是增長才干的一種好辦法,讓我們來為自己寫一份總結(jié)吧。總結(jié)怎么寫才能發(fā)揮它的作用呢?下面是小編整理的高一數(shù)學知識點總結(jié),希望能夠幫助到大家。
高一數(shù)學知識點總結(jié)1
空間點、直線、平面之間的位置關(guān)系
以下知識點需要我們?nèi)ダ斫,記憶?/p>
1、數(shù)學所說的直線是無限延伸的,沒有起點,也沒有終點。
2、數(shù)學所說的平面是無限延伸的,沒有起始線,也沒有終點線。
3、公理1 如果一條直線上的兩點在一個平面內(nèi),那么這條直線在此平面內(nèi)。
4、過不在同一直線上的三點,有且只有一個平面。
5、如果兩個不重合的平面有一個公共點,那么它們有且只有一個過該點的公共直線。
6、平行于同一條直線的兩條直線平行。
7、直線在平面內(nèi),因為直線上有無數(shù)多個點,平面上也有無數(shù)多個點,因此用子集的符號表示直線在平面內(nèi)。
8、直線與平面的位置關(guān)系,直線與直線的位置關(guān)系是本節(jié)課的重點和難點。
9、做位置關(guān)系的題目,可以借助實物,直觀理解。
一、直線與方程考試內(nèi)容及考試要求
考試內(nèi)容:
1.直線的傾斜角和斜率;直線方程的點斜式和兩點式;直線方程的一般式;
2.兩條直線平行與垂直的條件;兩條直線的交角;點到直線的距離;
考試要求:
1.理解直線的傾斜角和斜率的'概念,掌握過兩點的直線的斜率公式,掌握直線方程的點斜式、兩點式、一般式,并能根據(jù)條件熟練地求出直線方程。
2.掌握兩條直線平行與垂直的條件,兩條直線所成的角和點到直線的距離公式能夠根據(jù)直
線的方程判斷兩條直線的位置關(guān)系。
高一數(shù)學知識點總結(jié)2
高一數(shù)學必修一知識點
指數(shù)函數(shù)
(一)指數(shù)與指數(shù)冪的運算
1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.
當是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負數(shù)的次方根是一個負數(shù).此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).
當是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù).此時,正數(shù)的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數(shù)沒有偶次方根;0的任何次方根都是0,記作。
注意:當是奇數(shù)時,當是偶數(shù)時,
2.分數(shù)指數(shù)冪
正數(shù)的分數(shù)指數(shù)冪的意義,規(guī)定:
0的正分數(shù)指數(shù)冪等于0,0的負分數(shù)指數(shù)冪沒有意義
指出:規(guī)定了分數(shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.
3.實數(shù)指數(shù)冪的運算性質(zhì)
(二)指數(shù)函數(shù)及其性質(zhì)
1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域為R.
注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負數(shù)、零和1.
2、指數(shù)函數(shù)的圖象和性質(zhì)
高一上冊數(shù)學必修一知識點梳理
空間幾何體表面積體積公式:
1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
3、a-邊長,S=6a2,V=a3
4、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc
5、棱柱S-h-高V=Sh
6、棱錐S-h-高V=Sh/3
7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3
8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6
9、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側(cè)—,S表—表面積C=2πrS底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圓柱R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)
11、r-底半徑h-高V=πr^2h/3
12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6
14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
15、球臺r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6
16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/4
17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)
人教版高一數(shù)學必修一知識點梳理
1、柱、錐、臺、球的結(jié)構(gòu)特征
(1)棱柱:
定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱。
幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱錐、四棱錐、五棱錐等
表示:用各頂點字母,如五棱錐
幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。
(3)棱臺:
定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的`部分。
分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱態(tài)、四棱臺、五棱臺等
表示:用各頂點字母,如五棱臺
幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點
(4)圓柱:
定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。
幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個矩形。
(5)圓錐:
定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。
幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側(cè)面展開圖是一個扇形。
(6)圓臺:
定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點;③側(cè)面展開圖是一個弓形。
(7)球體:
定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。
2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)
注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;
俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;
側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。
3、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點:
、僭瓉砼cx軸平行的線段仍然與x平行且長度不變;
、谠瓉砼cy軸平行的線段仍然與y平行,長度為原來的一半。
高一數(shù)學知識點總結(jié)3
第一章集合與函數(shù)概念
一、集合有關(guān)概念
1.集合的含義
2.集合的中元素的三個特性:
(1)元素的確定性如:世界上最高的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合3.集合的表示:{}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}(2)集合的表示方法:列舉法與描述法。注意:常用數(shù)集及其記法:非負整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集N*或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R
1)列舉法:{a,b,c}
2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合
的方法。{xR|x-3>2},{x|x-3>2}
3)語言描述法:例:{不是直角三角形的三角形}4)Venn圖:
4、集合的分類:
(1)有限集含有有限個元素的集合(2)無限集含有無限個元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關(guān)系1.“包含”關(guān)系子集
注意:AB有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)
實例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”即:①任何一個集合是它本身的子集。AA
、谡孀蛹:如果AB,且AB那就說集合A是集合B的真子集,記作ABA)
、廴绻鸄B,BC,那么AC④如果AB同時BA那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。有n個元素的集合,含有2n個子集,2n-1個真子集三、集合的運算運算交集并集補集類型定由所有屬于A且屬義于B的元素所組成的集合,叫做A,B的交集.記作AB(讀由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:ABB(或
設(shè)S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)
作‘A交B’),即(讀作‘A并B’),記作CSA,即AB={x|xA,且即AB={x|xA,xB}.或xB}).CSA={x|xS,且xA}韋恩ABABS圖A示圖1圖2性AA=AAA=A(CuA)(CuB)AΦ=ΦA(chǔ)Φ=AAAA=Cu(AB=BB=BAB)ABAABA(CuA)(CuB)質(zhì)ABBABB=Cu(AB)A(CuA)=UA(CuA)=Φ.
例題:
1.下列四組對象,能構(gòu)成集合的是()
A某班所有高個子的學生B著名的藝術(shù)家C一切很大的書D倒數(shù)等于它自身的實數(shù)2.集合{a,b,c}的真子集共有個
3.若集合M={y|y=x2-2x+1,xR},N={x|x≥0},則M與N的關(guān)系是
4.設(shè)集合A=x1x2,B=xxa,若AB,則a的取值范圍是
5.50名學生做的物理、化學兩種實驗,已知物理實驗做得正確得有人,化學實驗做得正確得有31人,兩種實驗都做錯得有4人,則這兩種實驗都做對的有人。
6.用描述法表示圖中陰影部分的點(含邊界上的點)組成的集合M=.
7.已知集合A={x|x2+2x-8=0},B={x|x2-5x+6=0},C={x|x2-mx+m2-19=0},若B∩C≠Φ,A∩C=Φ,求m的值
二、函數(shù)的有關(guān)概念
1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.注意:
1.定義域:能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域。求函數(shù)的定義域時列不等式組的主要依據(jù)是:
(1)分式的分母不等于零;
(2)偶次方根的被開方數(shù)不小于零;
(3)對數(shù)式的真數(shù)必須大于零;
(4)指數(shù)、對數(shù)式的底必須大于零且不等于1.
(5)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數(shù)為零底不可以等于零,
(7)實際問題中的函數(shù)的定義域還要保證實際問題有意義.相同函數(shù)的判斷方法:①表達式相同(與表示自變量和函數(shù)值的字母無關(guān));②定義域一致(兩點必須同時具備)(見課本21頁相關(guān)例2)
2.值域:先考慮其定義域(1)觀察法(2)配方法
(3)代換法
3.函數(shù)圖象知識歸納
(1)定義:在平面直角坐標系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標,函數(shù)值y為縱坐標的點P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點的'坐標(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標的點(x,y),均在C上
(2)畫法A、描點法:B、圖象變換法
常用變換方法有三種
1)平移變換
2)伸縮變換
3)對稱變換
4.區(qū)間的概念
。1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間
。2)無窮區(qū)間
。3)區(qū)間的數(shù)軸表示
5.映射
一般地,設(shè)A、B是兩個非空的集合,如果按某一個確定的對應(yīng)法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應(yīng),那么就稱對應(yīng)f:AB為從集合A到集合B的一個映射。記作“f(對應(yīng)關(guān)系):A(原象)B(象)”
對于映射f:A→B來說,則應(yīng)滿足:
(1)集合A中的每一個元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中對應(yīng)的象可以是同一個;(3)不要求集合B中的每一個元素在集合A中都有原象。6.分段函數(shù)
(1)在定義域的不同部分上有不同的解析表達式的函數(shù)。(2)各部分的自變量的取值情況.
(3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.補充:復合函數(shù)
如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復合函數(shù)。
二.函數(shù)的性質(zhì)
函數(shù)的單調(diào)性(局部性質(zhì))(1)增函數(shù)
設(shè)函數(shù)y=f(x)的定義域為I,如果對于定義域I內(nèi)的某個區(qū)間D內(nèi)的任意兩個自變量x1,x2,當x1>f(x2),那么就說f(x)在這個區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調(diào)
減區(qū)間.
注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);
。2)圖象的特點
如果函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的(3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法(A)定義法:
3利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲担骸
如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有最大值f(b);
如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);例題:
1.求下列函數(shù)的定義域:⑴yx2x15x332⑵y1(x1x12)2.設(shè)函數(shù)f(x)的定義域為[0,1],則函數(shù)f(x2)的定義域為__
3.若函數(shù)f(x1)的定義域為[2,3],則函數(shù)f(2x1)的定義域是4.函數(shù)
x2(x1)2,若f(x)3,則xf(x)x(1x2)2x(x2)2=
5.求下列函數(shù)的值域:
、舮x22x3(xR)⑵yx2x3x[1,2]
(3)yx12x(4)y6.已知函數(shù)
f(x1)x4x,求函數(shù)
2x4x52f(x),f(2x1)的解析式
7.已知函數(shù)f(x)滿足2f(x)f(x)3x4,則f(x)=。8.設(shè)f(x)是R上的奇函數(shù),且當x[0,)時,
f(x)x(13x),則當x(,0)時
f(x)=
f(x)在R上的解析式為9.求下列函數(shù)的單調(diào)區(qū)間:⑴yx22x3⑵y2x2x3⑶yx6x1
210.判斷函數(shù)yx31的單調(diào)性并證明你的結(jié)論.
211.設(shè)函數(shù)f(x)1x判斷它的奇偶性并且求證:f(1)f(x).
21xx
高一數(shù)學知識點總結(jié)4
一:函數(shù)及其表示
知識點詳解文檔包含函數(shù)的概念、映射、函數(shù)關(guān)系的判斷原則、函數(shù)區(qū)間、函數(shù)的三要素、函數(shù)的定義域、求具體或抽象數(shù)值的函數(shù)值、求函數(shù)值域、函數(shù)的表示方法等
1. 函數(shù)與映射的區(qū)別:
2. 求函數(shù)定義域
常見的用解析式表示的函數(shù)f(x)的定義域可以歸納如下:
、佼攆(x)為整式時,函數(shù)的定義域為R.
、诋攆(x)為分式時,函數(shù)的定義域為使分式分母不為零的實數(shù)集合。
、郛攆(x)為偶次根式時,函數(shù)的定義域是使被開方數(shù)不小于0的實數(shù)集合。
④當f(x)為對數(shù)式時,函數(shù)的定義域是使真數(shù)為正、底數(shù)為正且不為1的實數(shù)集合。
、萑绻鹒(x)是由幾個部分的數(shù)學式子構(gòu)成的,那么函數(shù)定義域是使各部分式子都有意義的實數(shù)集合,即求各部分有意義的實數(shù)集合的交集。
、迯秃虾瘮(shù)的定義域是復合的各基本的函數(shù)定義域的交集。
、邔τ谟蓪嶋H問題的背景確定的函數(shù),其定義域除上述外,還要受實際問題的制約。
3. 求函數(shù)值域
(1)、觀察法:通過對函數(shù)定義域、性質(zhì)的觀察,結(jié)合函數(shù)的解析式,求得函數(shù)的值域;
(2)、配方法;如果一個函數(shù)是二次函數(shù)或者經(jīng)過換元可以寫成二次函數(shù)的形式,那么將這個函數(shù)的右邊配方,通過自變量的范圍可以求出該函數(shù)的值域;
(3)、判別式法:
(4)、數(shù)形結(jié)合法;通過觀察函數(shù)的`圖象,運用數(shù)形結(jié)合的方法得到函數(shù)的值域;
(5)、換元法;以新變量代替函數(shù)式中的某些量,使函數(shù)轉(zhuǎn)化為以新變量為自變量的函數(shù)形式,進而求出值域;
(6)、利用函數(shù)的單調(diào)性;如果函數(shù)在給出的定義域區(qū)間上是嚴格單調(diào)的,那么就可以利用端點的函數(shù)值來求出值域;
(7)、利用基本不等式:對于一些特殊的分式函數(shù)、高于二次的函數(shù)可以利用重要不等式求出函數(shù)的值域;
(8)、最值法:對于閉區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),可求出y=f(x)在區(qū)間[a,b]內(nèi)的極值,并與邊界值f(a).f(b)作比較,求出函數(shù)的最值,可得到函數(shù)y的值域;
(9)、反函數(shù)法:如果函數(shù)在其定義域內(nèi)存在反函數(shù),那么求函數(shù)的值域可以轉(zhuǎn)化為求反函數(shù)的定義域。
高一數(shù)學知識點總結(jié)5
一、直線與方程
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0180
(2)直線的斜率
、俣x:傾斜角不是90的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當時,。當時,;當時,不存在。
、谶^兩點的直線的'斜率公式:
注意下面四點:
(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90
(2)k與P1、P2的順序無關(guān);
(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。
(3)直線方程
、冱c斜式:直線斜率k,且過點
注意:當直線的斜率為0時,k=0,直線的方程是y=y1。當直線的斜率為90時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等于x1,所以它的方程是x=x1。
、谛苯厥剑海本斜率為k,直線在y軸上的截距為b
、蹆牲c式:()直線兩點,
、芙鼐厥剑浩渲兄本與軸交于點,與軸交于點,即與軸、軸的截距分別為。
⑤一般式:(A,B不全為0)
、菀话闶剑(A,B不全為0)
注意:○1各式的適用范圍
○2特殊的方程如:平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));
(4)直線系方程:即具有某一共同性質(zhì)的直線
(一)平行直線系
平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))
(二)過定點的直線系
(ⅰ)斜率為k的直線系:直線過定點;
(ⅱ)過兩條直線,的交點的直線系方程為(為參數(shù)),其中直線不在直線系中。
(5)兩直線平行與垂直;
注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。
(6)兩條直線的交點
相交:交點坐標即方程組的一組解。方程組無解;方程組有無數(shù)解與重合
(7)兩點間距離公式:設(shè)是平面直角坐標系中的兩個點,則
(8)點到直線距離公式:一點到直線的距離
(9)兩平行直線距離公式:在任一直線上任取一點,再轉(zhuǎn)化為點到直線的距離進行求解。
高一數(shù)學知識點總結(jié)6
集合的運算
1。交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集。
記作AB(讀作A交B),即AB={x|xA,且xB}。
2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的.并集。記作:AB(讀作A并B),即AB={x|xA,或xB}。
3、交集與并集的性質(zhì):AA=A,A=,AB=BA,AA=A,A=A,AB=BA。
4、全集與補集
(1)補集:設(shè)S是一個集合,A是S的一個子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)
(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。
(3)性質(zhì):
、臗U(CUA)=A
、(CUA)
、(CUA)A=U
高一數(shù)學知識點總結(jié)7
1.函數(shù)知識:基本初等函數(shù)性質(zhì)的考查,以導數(shù)知識為背景的函數(shù)問題;以向量知識為背景的函數(shù)問題;從具體函數(shù)的考查轉(zhuǎn)向抽象函數(shù)考查;從重結(jié)果考查轉(zhuǎn)向重過程考查;從熟悉情景的考查轉(zhuǎn)向新穎情景的考查。
2.向量知識:向量具有數(shù)與形的雙重性,高考中向量試題的命題趨向:考查平面向量的基本概念和運算律;考查平面向量的坐標運算;考查平面向量與幾何、三角、代數(shù)等學科的綜合性問題。
3.不等式知識:突出工具性,淡化獨立性,突出解,是不等式命題的新取向。高考中不等式試題的命題趨向:基本的線性規(guī)劃問題為必考內(nèi)容,不等式的'性質(zhì)與指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)、二交函數(shù)等結(jié)合起來,考查不等式的性質(zhì)、最值、函數(shù)的單調(diào)性等;證明不等式的試題,多以函數(shù)、數(shù)列、解析幾何等知識為背景,在知識網(wǎng)絡(luò)的交匯處命題,綜合性強,能力要求高;解不等式的試題,往往與公式、根式和參數(shù)的討論聯(lián)系在一起?疾閷W生的等價轉(zhuǎn)化能力和分類討論能力;以當前經(jīng)濟、社會生產(chǎn)、生活為背景與不等式綜合的應(yīng)用題仍將是高考的熱點,主要考查學生閱讀理解能力以及分析問題、解決問題的能力。
4.立體幾何知識:20xx年已經(jīng)變得簡單,20xx年難度依然不大,基本的三視圖的考查難點不大,以及球與幾何體的組合體,涉及切,接的問題,線面垂直、平行位置關(guān)系的考查,已經(jīng)線面角,面面角和幾何體的體積計算等問題,都是重點考查內(nèi)容。
5.解析幾何知識:小題主要涉及圓錐曲線方程,和直線與圓的位置關(guān)系,以及圓錐曲線幾何性質(zhì)的考查,極坐標下的解析幾何知識,解答題主要考查直線和圓的知識,直線與圓錐曲線的知識,涉及圓錐曲線方程,直線與圓錐曲線方程聯(lián)立,定點,定值,范圍的考查,考試的難度降低。
6.導數(shù)知識:導數(shù)的考查還是以理科19題,文科20題的形式給出,從常見函數(shù)入手,導數(shù)工具作用(切線和單調(diào)性)的考查,綜合性強,能力要求高;往往與公式、導數(shù)往往與參數(shù)的討論聯(lián)系在一起,考查轉(zhuǎn)化與化歸能力,但今年的難點整體偏低。
7.開放型創(chuàng)新題:答案不,或是邏輯推理題,以及解答題中的開放型試題的考查,都是重點,理科13,文科14題。
高一數(shù)學知識點總結(jié)8
圓的方程定義:
圓的標準方程(x-a)2+(y-b)2=r2中,有三個參數(shù)a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。
直線和圓的位置關(guān)系:
1.直線和圓位置關(guān)系的判定方法一是方程的觀點,即把圓的方程和直線的方程聯(lián)立成方程組,利用判別式Δ來討論位置關(guān)系.
①Δ>0,直線和圓相交.②Δ=0,直線和圓相切.③Δ<0,直線和圓相離.
方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較.
、賒R,直線和圓相離.
2.直線和圓相切,這類問題主要是求圓的切線方程.求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況.
3.直線和圓相交,這類問題主要是求弦長以及弦的中點問題.
切線的性質(zhì)
⑴圓心到切線的距離等于圓的半徑;
、七^切點的半徑垂直于切線;
、墙(jīng)過圓心,與切線垂直的直線必經(jīng)過切點;
、冉(jīng)過切點,與切線垂直的直線必經(jīng)過圓心;
當一條直線滿足
(1)過圓心;
(2)過切點;
(3)垂直于切線三個性質(zhì)中的兩個時,第三個性質(zhì)也滿足.
切線的.判定定理
經(jīng)過半徑的外端點并且垂直于這條半徑的直線是圓的切線.
切線長定理
從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角.
圓錐曲線性質(zhì):
一、圓錐曲線的定義
1.橢圓:到兩個定點的距離之和等于定長(定長大于兩個定點間的距離)的動點的軌跡叫做橢圓.
2.雙曲線:到兩個定點的距離的差的絕對值為定值(定值小于兩個定點的距離)的動點軌跡叫做雙曲線.即.
3.圓錐曲線的統(tǒng)一定義:到定點的距離與到定直線的距離的比e是常數(shù)的點的軌跡叫做圓錐曲線.當01時為雙曲線.
二、圓錐曲線的方程
1.橢圓:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2)
2.雙曲線:-=1(a>0,b>0)或-=1(a>0,b>0)(其中,c2=a2+b2)
3.拋物線:y2=±2px(p>0),x2=±2py(p>0)
三、圓錐曲線的性質(zhì)
1.橢圓:+=1(a>b>0)
(1)范圍:|x|≤a,|y|≤b(2)頂點:(±a,0),(0,±b)(3)焦點:(±c,0)(4)離心率:e=∈(0,1)(5)準線:x=±
2.雙曲線:-=1(a>0,b>0)(1)范圍:|x|≥a,y∈R(2)頂點:(±a,0)(3)焦點:(±c,0)(4)離心率:e=∈(1,+∞)(5)準線:x=±(6)漸近線:y=±x
3.拋物線:y2=2px(p>0)(1)范圍:x≥0,y∈R(2)頂點:(0,0)(3)焦點:(,0)(4)離心率:e=1(5)準線:x=-
高一數(shù)學知識點總結(jié)9
指數(shù)函數(shù)——信息技術(shù)應(yīng)用 借助信息技術(shù)探究指數(shù)函數(shù)的性質(zhì)
對數(shù)函數(shù)——閱讀與思考 對數(shù)的發(fā)明
探究與發(fā)現(xiàn) 互為反函數(shù)的兩個函數(shù)圖像之間的關(guān)系
冪函數(shù)
復習參考題
第三章 函數(shù)的應(yīng)用
函數(shù)與方程——閱讀與思考 中外歷史上的方程求解
信息技術(shù)應(yīng)用 借助信息技術(shù)求方程的近似解
函數(shù)模型及其應(yīng)用——信息技術(shù)應(yīng)用 收集數(shù)據(jù)并建立函數(shù)模型
實習作業(yè)
復習參考題
關(guān)于數(shù)學:
課本上講的定理,你可以自己 試著自己去推理。這樣不但提高自己的證明能力,也加深對公式的理解。還有就 是大量練習題目;旧厦空n之后都要做課余練習的題目(不包括老師的作業(yè))。
數(shù)學成績的提高,數(shù)學方法的掌握都和同學們良好的學習習慣分不開 的,因此。良好的數(shù)學學習習慣包括:聽講、閱讀、探究、作業(yè)。聽講:應(yīng)抓住 聽課中的主要矛盾和問題,在聽講時盡可能與老師的講解同步思考,必要時做好 筆記。每堂課結(jié)束以后應(yīng)深思一下進行歸納,做到一課一得。
閱讀:閱讀時應(yīng) 仔細推敲,弄懂弄通每一個概念、定理和法則,對于例題應(yīng)與同類參考書聯(lián)系起 來一同學習,博采眾長,增長知識,發(fā)展思維。
探究:要學會思考,在問題解 決之后再探求一些新的方法,學會從不同角度去思考問題,甚至改變條件或結(jié)論 去發(fā)現(xiàn)新問題,經(jīng)過一段學習,應(yīng)當將自己的思路整理一下,以形成自己的思維 規(guī)律。作業(yè):要先復習后作業(yè),先思考再動筆,做會一類題領(lǐng)會一大片,作業(yè)要 認真、書寫要規(guī)范,只有這樣腳踏實地,一步一個腳印,才能學好數(shù)學。
總之,在學習數(shù)學的過程中,要認識到數(shù)學的重要性,充分發(fā)揮自己 的主觀能動性,從小的細節(jié)注意起,養(yǎng)成良好的數(shù)學學習習慣,進而培養(yǎng)思考問 題、分析問題和解決問題的能力,最終把數(shù)學學好。
到了高中,數(shù)學跟初中數(shù) 學是有很多的不同,對知識的理解能力要求高了,對數(shù)學思維的要求也高了,憑 以前的方法是不行了。
高中數(shù)學學習方法一般來講還是以上課認真聽講為主, 抓住課本典型例題理解透了掌握透了才是王道,千萬別只顧著看參考書了,那是 本末倒置的方法;另外與老師交朋友經(jīng)常與老師溝通,問問題、請教學習方法都 很重要。建立自己的錯題檔案是殺手锏的一招。
總之,是個積累的過程,你了 解的越多,學習就越好,所以多記憶,選擇自己的方法。
有關(guān)數(shù)學知識點拓展 數(shù)學(mathematics),是研究數(shù)量、結(jié)構(gòu)、變化、空間以及信息等概念 的一門學科,從某種角度看屬于形式科學的一種。借用《數(shù)學簡史》的話,數(shù)學就是研究集合上各種結(jié)構(gòu)(關(guān)系)的科學, 可見,數(shù)學是一門抽象的學科,而嚴謹?shù)倪^程是數(shù)學抽象的關(guān)鍵。
數(shù)學在人類歷史發(fā)展和社會生活中發(fā)揮著不可替代的作用,也是學習和研究現(xiàn)代科學技術(shù)必不可少的基本工具。
數(shù)學起源于人類早期的生產(chǎn)活動,古巴比倫人從遠古時代開始已經(jīng)積 累了一定的數(shù)學知識,并能應(yīng)用實際問題。從數(shù)學本身看,他們的'數(shù)學知識也只 是觀察和經(jīng)驗所得,沒有綜合結(jié)論和證明,但也要充分肯定他們對數(shù)學所做出的 貢獻。
基礎(chǔ)數(shù)學的知識與運用是個人與團體生活中不可或缺的一部分。其基 本概念的精煉早在古埃及、美索不達米亞及古印度內(nèi)的古代數(shù)學文本內(nèi)便可觀見。
從那時開始,其發(fā)展便持續(xù)不斷地有小幅度的進展。但當時的代數(shù)學和幾何學長 久以來仍處于獨立的狀態(tài)。代數(shù)學可以說是最為人們廣泛接受的“數(shù)學”。
可以說每一個人從小時候開始學數(shù)數(shù)起,最先接觸到的數(shù)學就是代數(shù) 學。而數(shù)學作為一個研究“數(shù)”的學科,代數(shù)學也是數(shù)學最重要的組成部分之一。
幾何學則是最早開始被人們研究的數(shù)學分支。直到16世紀的文藝復興時期,笛卡 爾創(chuàng)立了解析幾何,將當時完全分開的代數(shù)和幾何學聯(lián)系到了一起。從那以后, 我們終于可以用計算證明幾何學的定理;同時也可以用圖形來形象的表示抽象的 代數(shù)方程。而其后更發(fā)展出更加精微的微積分。
西方最原始math(數(shù)學)應(yīng)用之一,奇普現(xiàn)時數(shù)學已包括多個分支。創(chuàng) 立于二十世紀三十年代的法國的布爾巴基學派則認為:數(shù)學,至少純數(shù)學,是研 究抽象結(jié)構(gòu)的理論。結(jié)構(gòu),就是以初始概念和公理出發(fā)的演繹系統(tǒng)。他們認為, 數(shù)學有三種基本的母結(jié)構(gòu):代數(shù)結(jié)構(gòu)(群,環(huán),域,格……)、序結(jié)構(gòu)(偏序,全序 ……)、拓撲結(jié)構(gòu)(鄰域,極限,連通性,維數(shù)……)。
數(shù)學被應(yīng)用在很多不同的領(lǐng)域上,包括科學、工程、醫(yī)學和經(jīng)濟學等。
數(shù)學在這些領(lǐng)域的應(yīng)用一般被稱為應(yīng)用數(shù)學,有時亦會激起新的數(shù)學發(fā)現(xiàn),并促 成全新數(shù)學學科的發(fā)展。數(shù)學家也研究純數(shù)學,也就是數(shù)學本身,而不以任何實 際應(yīng)用為目標。雖然有許多工作以研究純數(shù)學為開端,但之后也許會發(fā)現(xiàn)合適的 應(yīng)用。
具體的,有用來探索由數(shù)學核心至其他領(lǐng)域上之間的連結(jié)的子領(lǐng)域:由邏輯、集合論(數(shù)學基礎(chǔ))、至不同科學的經(jīng)驗上的數(shù)學(應(yīng)用數(shù)學)、以較近代 的對于不確定性的研究(混沌、模糊數(shù)學)。就縱度而言,在數(shù)學各自領(lǐng)域上的探 索亦越發(fā)深入。
如何學好數(shù)學
1、重視課本知識
對于高一學生來說,大部分數(shù)學知識的來源都是課本,只有很少的一部分知識是課外拓展。所以高一學生想要學好數(shù)學,就要先把課本知識理解透徹。平時做題的時候,也要以課本為重,把課本上的練習做會了,再做其他題。
2、課前預習
對很多高一學生來說,還沒有養(yǎng)成良好的學習習慣,完全沒有課前預習的習慣。但是如果想要學好高一數(shù)學,一定要進行適當?shù)念A習,如果時間不多,可以瀏覽一下老師要講的主要內(nèi)容,有一個大概的印象。這樣在上課的時候,可以更好的跟上老師的思路。
最牛高考勵志書,淘寶搜索《高考蝶變》購買!
3、記好筆記
對于高一學生來說,想要學好數(shù)學,記好課堂筆記也是一件很重要的事情。不要以為記筆記是文科生該做的事情,理科同樣需要。高一學生要清楚,在這45分鐘內(nèi),并不是所有的知識點都能掌握的,這個時候要把自己沒有理解的知識點記下來,然后課下再去鉆研。另外筆記也可以作為考試復習時的參考!
4、及時復習
想要學好高一數(shù)學,及時復習是其中重要的一環(huán)。高一學生可以通過反復閱讀教材和查找相關(guān)資料,來加深自己對基本概念和知識體系的理解和記憶,把自己學到的新知識和舊知識聯(lián)系起來,進行比較和分析。
高一數(shù)學知識點總結(jié)10
本節(jié)內(nèi)容主要是空間點、直線、平面之間的位置關(guān)系,在認識過程中,可以進一步提高同學們的空間想象能力,發(fā)展推理能力.通過對實際模型的認識,學會將文字語言轉(zhuǎn)化為圖形語言和符號語言,以具體的長方體中的點、線、面之間的關(guān)系作為載體,使同學們在直觀感知的基礎(chǔ)上,認識空間中點、線、面之間的位置關(guān)系,點、線、面的位置關(guān)系是立體幾何的主要研究對象,同時也是空間圖形最基本的幾何元素.
重難點知識歸納
1、平面
(1)平面概念的理解
直觀的理解:桌面、黑板面、平靜的水面等等都給人以平面的直觀的印象,但它們都不是平面,而僅僅是平面的一部分.
抽象的理解:平面是平的,平面是無限延展的,平面沒有厚薄.
(2)平面的`表示法
、賵D形表示法:通常用平行四邊形來表示平面,有時根據(jù)實際需要,也用其他的平面圖形來表示平面.
、谧帜副硎荆撼S玫认ED字母表示平面.
(3)涉及本部分內(nèi)容的符號表示有:
①點A在直線l內(nèi),記作; ②點A不在直線l內(nèi),記作;
、埸cA在平面內(nèi),記作; ④點A不在平面內(nèi),記作;
、葜本l在平面內(nèi),記作; ⑥直線l不在平面內(nèi),記作;
注意:符號的使用與集合中這四個符號的使用的區(qū)別與聯(lián)系.
(4)平面的基本性質(zhì)
公理1:如果一條直線的兩個點在一個平面內(nèi),那么這條直線上的所有點都在這個平面內(nèi).
符號表示為:.
注意:如果直線上所有的點都在一個平面內(nèi),我們也說這條直線在這個平面內(nèi),或者稱平面經(jīng)過這條直線.
公理2:過不在一條直線上的三點,有且只有一個平面.
符號表示為:直線AB存在唯一的平面,使得.
注意:“有且只有”的含義是:“有”表示存在,“只有”表示唯一,不能用“只有”來代替.此公理又可表示為:不共線的三點確定一個平面.
公理3:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線.
符號表示為:.
注意:兩個平面有一條公共直線,我們說這兩個平面相交,這條公共直線就叫作兩個平面的交線.若平面、平面相交于直線l,記作.
公理的推論:
推論1:經(jīng)過一條直線和直線外的一點有且只有一個平面.
推論2:經(jīng)過兩條相交直線有且只有一個平面.
推論3:經(jīng)過兩條平行直線有且只有一個平面.
2.空間直線
(1)空間兩條直線的位置關(guān)系
、傧嘟恢本:有且僅有一個公共點,可表示為;
、谄叫兄本:在同一個平面內(nèi),沒有公共點,可表示為a//b;
、郛惷嬷本:不同在任何一個平面內(nèi),沒有公共點.
(2)平行直線
公理4:平行于同一條直線的兩條直線互相平行.
符號表示為:設(shè)a、b、c是三條直線,.
定理:如果一個角的兩邊和另一個角的兩邊分別平行并且方向相同,那么這兩個角相等.
(3)兩條異面直線所成的角
注意:
、賰蓷l異面直線a,b所成的角的范圍是(0°,90°].
、趦蓷l異面直線所成的角與點O的選擇位置無關(guān),這可由前面所講過的“等角定理”直接得出.
、塾蓛蓷l異面直線所成的角的定義可得出異面直線所成角的一般方法:
(i)在空間任取一點,這個點通常是線段的中點或端點.
(ii)分別作兩條異面直線的平行線,這個過程通常采用平移的方法來實現(xiàn).
(iii)指出哪一個角為兩條異面直線所成的角,這時我們要注意兩條異面直線所成的角的范圍.
3.空間直線與平面
直線與平面位置關(guān)系有且只有三種:
(1)直線在平面內(nèi):有無數(shù)個公共點;
(2)直線與平面相交:有且只有一個公共點;
(3)直線與平面平行:沒有公共點.
4.平面與平面
兩個平面之間的位置關(guān)系有且只有以下兩種:
(1)兩個平面平行:沒有公共點;
(2)兩個平面相交:有一條公共直線.
高一數(shù)學知識點總結(jié)11
【(一)、映射、函數(shù)、反函數(shù)】
1、對應(yīng)、映射、函數(shù)三個概念既有共性又有區(qū)別,映射是一種特殊的對應(yīng),而函數(shù)又是一種特殊的映射.
2、對于函數(shù)的概念,應(yīng)注意如下幾點:
(1)掌握構(gòu)成函數(shù)的三要素,會判斷兩個函數(shù)是否為同一函數(shù).
(2)掌握三種表示法——列表法、解析法、圖象法,能根實際問題尋求變量間的函數(shù)關(guān)系式,特別是會求分段函數(shù)的解析式.
(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復合函數(shù),其中g(shù)(x)為內(nèi)函數(shù),f(u)為外函數(shù).
3、求函數(shù)y=f(x)的反函數(shù)的一般步驟:
(1)確定原函數(shù)的值域,也就是反函數(shù)的定義域;
(2)由y=f(x)的解析式求出x=f-1(y);
(3)將x,y對換,得反函數(shù)的習慣表達式y(tǒng)=f-1(x),并注明定義域.
注意①:對于分段函數(shù)的反函數(shù),先分別求出在各段上的反函數(shù),然后再合并到一起.
②熟悉的應(yīng)用,求f-1(x0)的值,合理利用這個結(jié)論,可以避免求反函數(shù)的過程,從而簡化運算.
【(二)、函數(shù)的解析式與定義域】
1、函數(shù)及其定義域是不可分割的整體,沒有定義域的函數(shù)是不存在的,因此,要正確地寫出函數(shù)的解析式,必須是在求出變量間的對應(yīng)法則的同時,求出函數(shù)的定義域.求函數(shù)的定義域一般有三種類型:
(1)有時一個函數(shù)來自于一個實際問題,這時自變量x有實際意義,求定義域要結(jié)合實際意義考慮;
(2)已知一個函數(shù)的解析式求其定義域,只要使解析式有意義即可.如:
、俜质降姆帜覆坏脼榱;
②偶次方根的被開方數(shù)不小于零;
、蹖(shù)函數(shù)的真數(shù)必須大于零;
④指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)必須大于零且不等于1;
、萑呛瘮(shù)中的正切函數(shù)y=tanx(x∈R,且k∈Z),余切函數(shù)y=cotx(x∈R,x≠kπ,k∈Z)等.
應(yīng)注意,一個函數(shù)的解析式由幾部分組成時,定義域為各部分有意義的自變量取值的公共部分(即交集).
(3)已知一個函數(shù)的定義域,求另一個函數(shù)的定義域,主要考慮定義域的深刻含義即可.
已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時f(x)的定義域,即g(x)的值域.
2、求函數(shù)的解析式一般有四種情況
(1)根據(jù)某實際問題需建立一種函數(shù)關(guān)系時,必須引入合適的變量,根據(jù)數(shù)學的有關(guān)知識尋求函數(shù)的解析式.
(2)有時題設(shè)給出函數(shù)特征,求函數(shù)的解析式,可采用待定系數(shù)法.比如函數(shù)是一次函數(shù),可設(shè)f(x)=ax+b(a≠0),其中a,b為待定系數(shù),根據(jù)題設(shè)條件,列出方程組,求出a,b即可.
(3)若題設(shè)給出復合函數(shù)f[g(x)]的表達式時,可用換元法求函數(shù)f(x)的表達式,這時必須求出g(x)的值域,這相當于求函數(shù)的定義域.
(4)若已知f(x)滿足某個等式,這個等式除f(x)是未知量外,還出現(xiàn)其他未知量(如f(-x),等),必須根據(jù)已知等式,再構(gòu)造其他等式組成方程組,利用解方程組法求出f(x)的表達式.
【(三)、函數(shù)的值域與最值】
1、函數(shù)的值域取決于定義域和對應(yīng)法則,不論采用何種方法求函數(shù)值域都應(yīng)先考慮其定義域,求函數(shù)值域常用方法如下:
(1)直接法:亦稱觀察法,對于結(jié)構(gòu)較為簡單的函數(shù),可由函數(shù)的解析式應(yīng)用不等式的性質(zhì),直接觀察得出函數(shù)的值域.
(2)換元法:運用代數(shù)式或三角換元將所給的復雜函數(shù)轉(zhuǎn)化成另一種簡單函數(shù)再求值域,若函數(shù)解析式中含有根式,當根式里一次式時用代數(shù)換元,當根式里是二次式時,用三角換元.
(3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f-1(x)的定義域和值域間的關(guān)系,通過求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得.
(4)配方法:對于二次函數(shù)或二次函數(shù)有關(guān)的函數(shù)的值域問題可考慮用配方法.
(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過應(yīng)注意條件“一正二定三相等”有時需用到平方等技巧.
(6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“△≥0”求值域.其題型特征是解析式中含有根式或分式.
(7)利用函數(shù)的單調(diào)性求值域:當能確定函數(shù)在其定義域上(或某個定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域.
(8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結(jié)合求函數(shù)的值域.
2、求函數(shù)的最值與值域的區(qū)別和聯(lián)系
求函數(shù)最值的常用方法和求函數(shù)值域的`方法基本上是相同的,事實上,如果在函數(shù)的值域中存在一個最小(大)數(shù),這個數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實質(zhì)是相同的,只是提問的角度不同,因而答題的方式就有所相異.
如函數(shù)的值域是(0,16],值是16,無最小值.再如函數(shù)的值域是(-∞,-2]∪[2,+∞),但此函數(shù)無值和最小值,只有在改變函數(shù)定義域后,如x>0時,函數(shù)的最小值為2.可見定義域?qū)瘮?shù)的值域或最值的影響.
3、函數(shù)的最值在實際問題中的應(yīng)用
函數(shù)的最值的應(yīng)用主要體現(xiàn)在用函數(shù)知識求解實際問題上,從文字表述上常常表現(xiàn)為“工程造價最低”,“利潤”或“面積(體積)(最小)”等諸多現(xiàn)實問題上,求解時要特別關(guān)注實際意義對自變量的制約,以便能正確求得最值.
【(四)、函數(shù)的奇偶性】
1、函數(shù)的奇偶性的定義:對于函數(shù)f(x),如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函數(shù)f(x)就叫做奇函數(shù)(或偶函數(shù)).
正確理解奇函數(shù)和偶函數(shù)的定義,要注意兩點:(1)定義域在數(shù)軸上關(guān)于原點對稱是函數(shù)f(x)為奇函數(shù)或偶函數(shù)的必要不充分條件;(2)f(x)=-f(x)或f(-x)=f(x)是定義域上的恒等式.(奇偶性是函數(shù)定義域上的整體性質(zhì)).
2、奇偶函數(shù)的定義是判斷函數(shù)奇偶性的主要依據(jù)。為了便于判斷函數(shù)的奇偶性,有時需要將函數(shù)化簡或應(yīng)用定義的等價形式:
注意如下結(jié)論的運用:
(1)不論f(x)是奇函數(shù)還是偶函數(shù),f(|x|)總是偶函數(shù);
(2)f(x)、g(x)分別是定義域D1、D2上的奇函數(shù),那么在D1∩D2上,f(x)+g(x)是奇函數(shù),f(x)·g(x)是偶函數(shù),類似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;
(3)奇偶函數(shù)的復合函數(shù)的奇偶性通常是偶函數(shù);
(4)奇函數(shù)的導函數(shù)是偶函數(shù),偶函數(shù)的導函數(shù)是奇函數(shù)。
3、有關(guān)奇偶性的幾個性質(zhì)及結(jié)論
(1)一個函數(shù)為奇函數(shù)的充要條件是它的圖象關(guān)于原點對稱;一個函數(shù)為偶函數(shù)的充要條件是它的圖象關(guān)于y軸對稱.
(2)如要函數(shù)的定義域關(guān)于原點對稱且函數(shù)值恒為零,那么它既是奇函數(shù)又是偶函數(shù).
(3)若奇函數(shù)f(x)在x=0處有意義,則f(0)=0成立.
(4)若f(x)是具有奇偶性的區(qū)間單調(diào)函數(shù),則奇(偶)函數(shù)在正負對稱區(qū)間上的單調(diào)性是相同(反)的。
(5)若f(x)的定義域關(guān)于原點對稱,則F(x)=f(x)+f(-x)是偶函數(shù),G(x)=f(x)-f(-x)是奇函數(shù).
(6)奇偶性的推廣
函數(shù)y=f(x)對定義域內(nèi)的任一x都有f(a+x)=f(a-x),則y=f(x)的圖象關(guān)于直線x=a對稱,即y=f(a+x)為偶函數(shù).函數(shù)y=f(x)對定義域內(nèi)的任-x都有f(a+x)=-f(a-x),則y=f(x)的圖象關(guān)于點(a,0)成中心對稱圖形,即y=f(a+x)為奇函數(shù)。
【(五)、函數(shù)的單調(diào)性】
1、單調(diào)函數(shù)
對于函數(shù)f(x)定義在某區(qū)間[a,b]上任意兩點x1,x2,當x1>x2時,都有不等式f(x1)>(或<)f(x2)成立,稱f(x)在[a,b]上單調(diào)遞增(或遞減);增函數(shù)或減函數(shù)統(tǒng)稱為單調(diào)函數(shù).
對于函數(shù)單調(diào)性的定義的理解,要注意以下三點:
(1)單調(diào)性是與“區(qū)間”緊密相關(guān)的概念.一個函數(shù)在不同的區(qū)間上可以有不同的單調(diào)性.
(2)單調(diào)性是函數(shù)在某一區(qū)間上的“整體”性質(zhì),因此定義中的x1,x2具有任意性,不能用特殊值代替.
(3)單調(diào)區(qū)間是定義域的子集,討論單調(diào)性必須在定義域范圍內(nèi).
(4)注意定義的兩種等價形式:
設(shè)x1、x2∈[a,b],那么:
、僭赱a、b]上是增函數(shù);
在[a、b]上是減函數(shù).
、谠赱a、b]上是增函數(shù).
在[a、b]上是減函數(shù).
需要指出的是:①的幾何意義是:增(減)函數(shù)圖象上任意兩點(x1,f(x1))、(x2,f(x2))連線的斜率都大于(或小于)零.
(5)由于定義都是充要性命題,因此由f(x)是增(減)函數(shù),且(或x1>x2),這說明單調(diào)性使得自變量間的不等關(guān)系和函數(shù)值之間的不等關(guān)系可以“正逆互推”.
5、復合函數(shù)y=f[g(x)]的單調(diào)性
若u=g(x)在區(qū)間[a,b]上的單調(diào)性,與y=f(u)在[g(a),g(b)](或g(b),g(a))上的單調(diào)性相同,則復合函數(shù)y=f[g(x)]在[a,b]上單調(diào)遞增;否則,單調(diào)遞減.簡稱“同增、異減”.
在研究函數(shù)的單調(diào)性時,常需要先將函數(shù)化簡,轉(zhuǎn)化為討論一些熟知函數(shù)的單調(diào)性。因此,掌握并熟記一次函數(shù)、二次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性,將大大縮短我們的判斷過程.
6、證明函數(shù)的單調(diào)性的方法
(1)依定義進行證明.其步驟為:①任取x1、x2∈M且x1(或<)f(x2);③根據(jù)定義,得出結(jié)論.
(2)設(shè)函數(shù)y=f(x)在某區(qū)間內(nèi)可導.
如果f′(x)>0,則f(x)為增函數(shù);如果f′(x)<0,則f(x)為減函數(shù).
【(六)、函數(shù)的圖象】
函數(shù)的圖象是函數(shù)的直觀體現(xiàn),應(yīng)加強對作圖、識圖、用圖能力的培養(yǎng),培養(yǎng)用數(shù)形結(jié)合的思想方法解決問題的意識.
求作圖象的函數(shù)表達式
與f(x)的關(guān)系
由f(x)的圖象需經(jīng)過的變換
y=f(x)±b(b>0)
沿y軸向平移b個單位
y=f(x±a)(a>0)
沿x軸向平移a個單位
y=-f(x)
作關(guān)于x軸的對稱圖形
y=f(|x|)
右不動、左右關(guān)于y軸對稱
y=|f(x)|
上不動、下沿x軸翻折
y=f-1(x)
作關(guān)于直線y=x的對稱圖形
y=f(ax)(a>0)
橫坐標縮短到原來的,縱坐標不變
y=af(x)
縱坐標伸長到原來的|a|倍,橫坐標不變
y=f(-x)
作關(guān)于y軸對稱的圖形
【例】定義在實數(shù)集上的函數(shù)f(x),對任意x,y∈R,有f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0.
、偾笞C:f(0)=1;
②求證:y=f(x)是偶函數(shù);
、廴舸嬖诔(shù)c,使求證對任意x∈R,有f(x+c)=-f(x)成立;試問函數(shù)f(x)是不是周期函數(shù),如果是,找出它的一個周期;如果不是,請說明理由.
思路分析:我們把沒有給出解析式的函數(shù)稱之為抽象函數(shù),解決這類問題一般采用賦值法.
解答:①令x=y=0,則有2f(0)=2f2(0),因為f(0)≠0,所以f(0)=1.
、诹顇=0,則有f(x)+f(-y)=2f(0)·f(y)=2f(y),所以f(-y)=f(y),這說明f(x)為偶函數(shù).
、鄯謩e用(c>0)替換x、y,有f(x+c)+f(x)=
所以,所以f(x+c)=-f(x).
兩邊應(yīng)用中的結(jié)論,得f(x+2c)=-f(x+c)=-[-f(x)]=f(x),
所以f(x)是周期函數(shù),2c就是它的一個周期.
高一數(shù)學知識點總結(jié)12
1、正弦定理:在C中,a、b、c分別為角、、C的對邊,R為C的外接圓的半徑,則有asinbsincsinC2R.
2、正弦定理的變形公式:①a2Rsin,b2Rsin,c2RsinC;②sin④a2R,sinb2R,sinCabsinc2R;③a:b:csin:sin:sinC;csinCabcsinsinsinCsin.(正弦定理主要用來解決兩類問題:1、已知兩邊和其中一邊所對的角,求其余的量。2、已知兩角和一邊,求其余的量。)⑤對于已知兩邊和其中一邊所對的角的題型要注意解的情況。(一解、兩解、無解三中情況)如:在三角形ABC中,已知a、b、A(A為銳角)求B。具體的做法是:數(shù)形結(jié)合思想畫出圖:法一:把a擾著C點旋轉(zhuǎn),看所得軌跡以AD有無交點:當無交點則B無解、當有一個交點則B有一解、當有兩個交點則B有兩個解。法二:是算出CD=bsinA,看a的情況:當a但不能到達,在岸邊選取相距3千米的C、D兩點,并測得∠ACB=75O,∠BCD=45O,∠ADC=30O,∠ADB=45(A、B、C、D在同一平面內(nèi)),求兩目標A、B之間的距離。本題解答過程略附:三角形的五個“心”;重心:三角形三條中線交點.外心:三角形三邊垂直平分線相交于一點.內(nèi)心:三角形三內(nèi)角的平分線相交于一點.垂心:三角形三邊上的高相交于一點.
7、數(shù)列:按照一定順序排列著的一列數(shù).
8、數(shù)列的項:數(shù)列中的每一個數(shù).
9、有窮數(shù)列:項數(shù)有限的數(shù)列.
10、無窮數(shù)列:項數(shù)無限的數(shù)列.
11、遞增數(shù)列:從第2項起,每一項都不小于它的前一項的數(shù)列(即:an+1>an).
12、遞減數(shù)列:從第2項起,每一項都不大于它的前一項的數(shù)列(即:an+1④nana1d1;⑤danamnm.
21、若an是等差數(shù)列,且mnpq(m、n、p、q),則amanapaq;若an是等差數(shù)列,且2npq(n、p、q),則2anapaq.
22、等差數(shù)列的前n項和的公式:①Snna1an2;②Snna1nn12d.③sna1a2an
23、等差數(shù)列的前n項和的性質(zhì):①若項數(shù)為2nn,則S2nnanan1,且S偶S奇nd,S奇S偶anan1.S奇S偶nn1②若項數(shù)為2n1n,則S2n12n1an,且S奇S偶an,S偶n1an)(其中S奇nan,
24、如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù),則這個數(shù)列稱為等比數(shù)列,這個常數(shù)稱為等比數(shù)列的公比.符號表示:an1anq(注:①等比數(shù)列中不會出現(xiàn)值為0的項;②同號位上的值同號)注:看數(shù)列是不是等比數(shù)列有以下四種方法: 2①anan1q(n2,q為常數(shù),且0)②anan1an1(n2,anan1an10)③ancqn(c,q為非零常數(shù)).④正數(shù)列{an}成等比的充要條件是數(shù)列{logxan}(x1)成等比數(shù)列.
25、在a與b中間插入一個數(shù)G,使a,G,b成等比數(shù)列,則G稱為a與b的等比中項.若Gab,22則稱G為a與b的等比中項.(注:由Gab不能得出a,G,b成等比,由a,G,bGab)2n1
26、若等比數(shù)列an的首項是a1,公比是q,則ana1q.
27、通項公式的變形:①anamqnm;②a1anqn1;③qn1ana1;④qnmanam.
28、若an是等比數(shù)列,且mnpq(m、n、p、q),則amanapaq;若an是等比數(shù)列,且2npq(n、p、q),則anapaq.na1q1
29、等比數(shù)列an的前n項和的公式:①Sna1qnaaq.②sn1n1q11q1q2a1a2an
30、對任意的數(shù)列{an}的前n項和Sn與通項an的`關(guān)系:ans1a1(n1)snsn1(n2)
[注]:①ana1n1dnda1d(d可為零也可不為零→為等差數(shù)列充要條件(即常數(shù)列也是等差數(shù)列)→若d不為0,則是等差數(shù)列充分條件).②等差{an}前n項和Sndddd22AnBnna1n→222可以為零也可不為零→為等差的充要條件→若為零,則是等差數(shù)列的充分條件;若d不為零,則是等差數(shù)列的充分條件.
、鄯橇愠(shù)列既可為等比數(shù)列,也可為等差數(shù)列.(不是非零,即不可能有等比數(shù)列)..附:幾種常見的數(shù)列的思想方法:⑴等差數(shù)列的前n項和為Sn,在d0時,有最大值.如何確定使Sn取最大值時的n值,有兩種方法:
d2n2一是求使an0,an10,成立的n值;二是由Sn數(shù)列通項公式、求和公式與函數(shù)對應(yīng)關(guān)系如下:數(shù)列等差數(shù)列等比數(shù)列數(shù)列等差數(shù)列前n項和公式通項公式(a1d2)n利用二次函數(shù)的性質(zhì)求n的值.
對應(yīng)函數(shù)(時為一次函數(shù))(指數(shù)型函數(shù))對應(yīng)函數(shù)(時為二次函數(shù))等比數(shù)列(指數(shù)型函數(shù))我們用函數(shù)的觀點揭開了數(shù)列神秘的“面紗”,將數(shù)列的通項公式以及前n項和看成是關(guān)于n的函數(shù),為我們解決數(shù)列有關(guān)問題提供了非常有益的啟示。
例題:1、等差數(shù)列分析:因為中,,則.是等差數(shù)列,所以是關(guān)于n的一次函數(shù),一次函數(shù)圖像是一條直線,則(n,m),(m,n),(m+n,)三點共線,所以利用每兩點形成直線斜率相等,即,得=0(圖像如上),這里利用等差數(shù)列通項公式與一次函數(shù)的對應(yīng)關(guān)系,并結(jié)合圖像,直觀、簡潔。
例題:2、等差數(shù)列中,,前n項和為,若,n為何值時最大?
分析:等差數(shù)列前n項和可以看成關(guān)于n的二次函數(shù)=,是拋物線=上的離散點,根據(jù)題意,,則因為欲求最大。最大值,故其對應(yīng)二次函數(shù)圖像開口向下,并且對稱軸為,即當時,
例題:3遞增數(shù)列,對任意正整數(shù)n,遞增得到:恒成立,設(shè)恒成立,求恒成立,即,則只需求出。,因為是遞的最大值即
分析:構(gòu)造一次函數(shù),由數(shù)列恒成立,所以可,顯然有最大值對一切對于一切,所以看成函數(shù)的取值范圍是:構(gòu)造二次函數(shù),,它的定義域是增數(shù)列,即函數(shù)為遞增函數(shù),單調(diào)增區(qū)間為,拋物線對稱軸,因為函數(shù)f(x)為離散函數(shù),要函數(shù)單調(diào)遞增,就看動軸與已知區(qū)間的位置。從對應(yīng)圖像上看,對稱軸的左側(cè)在也可以(如圖),因為此時B點比A點高。于是,,得⑵如果數(shù)列可以看作是一個等差數(shù)列與一個等比數(shù)列的對應(yīng)項乘積,求此數(shù)列前n項和可依照等比數(shù)列前n項和的推倒導方法:錯位相減求和.例如:112,314,...(2n1)12n,...⑶兩個等差數(shù)列的相同項亦組成一個新的等差數(shù)列,此等差數(shù)列的首項就是原兩個數(shù)列的第一個相同項,公差是兩個數(shù)列公差d1,d2的最小公倍數(shù).
2.判斷和證明數(shù)列是等差(等比)數(shù)列常有三種方法:(1)定義法:對于n≥2的任意自然數(shù),驗證anan1(anan1)為同一常數(shù)。(2)通項公式法。(3)中項公式法:驗證
2an1anan2(an1anan2)nN都成立。2am03.在等差數(shù)列{an}中,有關(guān)Sn的最值問題:(1)當a1>0,d把①式兩邊同乘2后得2sn=122232n2234n1②
用①-②,即:123nsn=122232n2①2sn=122232n2234n1②得sn12222n22(12)12n1n23nn1n2n122n2n1n1(1n)22∴sn(n1)2n12
4.倒序相加法:類似于等差數(shù)列前n項和公式的推導方法.5.常用結(jié)論1):1+2+3+...+n=n(n1)2212)1+3+5+...+(2n-1)=n3)12nn(n1)2223334)123n22216n(n1)(2n1)5)
1n(n1)1n1n11n(n2)1pq111()2nn21qp1p1q6)()(pq)
31、ab0ab;ab0ab;ab0ab.
32、不等式的性質(zhì):①abba;②ab,bcac;③abacbc;④ab,c0acbc,ab,c0acbc;⑤ab,cdacbd;nd0acabdb0a⑥;⑦⑧ab0nnbn,n1;anbn,n1.
33、一元二次不等式:只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的不等式.
34、含絕對值不等式、一元二次不等式的解法及延伸1.整式不等式(高次不等式)的解法
穿根法(零點分段法)求解不等式:a0xa1xnn1a2xn2an0(0)(a00)
解法:①將不等式化為a0(x-x1)(x-x2)(x-xm)>0(0”,則找“線”在x軸上方的區(qū)間;若不等式是“
由圖可看出不等式x23x26x80的解集為:
x|2x1,或x4
(x1)(x2)(x5)(x6)(x4)0的解集。
例題:求解不等式
解:略
一元二次不等式的求解:
特例①一元一次不等式ax>b解的討論;
②一元二次不等式ax+bx+c>0(a>0)解的討論.
二次函數(shù)yax22
000bxc有兩相異實根x1,x2(x1x2)(a0)的圖象一元二次方程ax2有兩相等實根x1x2b2abxc0a0的根2無實根Raxbxc0(a0)的解集axbxc0(a0)的解集2xxx或xx12bxx2axx1xx2對于a0(或
f(x)g(x)(2)轉(zhuǎn)化為整式不等式(組)
1xf(x)g(x)0f(x)g(x)0;f(x)g(x)00g(x)0g(x)
f(x)例題:求解不等式:解:略例題:求不等式
xx11
1的解集。
3.含絕對值不等式的解法:基本形式:
、傩腿纾簗x|<a(a>0)的不等式的解集為:x|axa②型如:|x|>a(a>0)的不等式的解集為:x|xa,或xa變型:
其中-c3x23x23x2(x2)(x3)10xR③當x2時,(去絕對值符號)原不等式化為:x2x292x9(x2)(x3)102x2由①②③得原不等式的解集為:x|112x9(注:是把①②③的解集并在一起)2y函數(shù)圖像法:
令f(x)|x2||x3|
2x1(x3)則有:f(x)5(3x2)
2x1(x2)f(x)=1051123o292x在直角坐標系中作出此分段函數(shù)及f(x)10的圖像如圖11292由圖像可知原不等式的解集為:x|x4.一元二次方程ax2+bx+c=0(a>0)的實根的分布常借助二次函數(shù)圖像來分析:y設(shè)ax2+bx+c=0的兩根為、,f(x)=ax2+bx+c,那么:0①若兩根都大于0,即0,0,則有0
0o對稱軸x=b2ax
0b0②若兩根都小于0,即0,0,則有2af(0)0y
11
對稱軸x=b2aox
、廴魞筛幸桓∮0一根大于0,即0,則有f(0)0
、苋魞筛趦蓪崝(shù)m,n之間,即mn,
0bnm則有2af(m)0of(n)0yoxymX=b2anx⑤若兩個根在三個實數(shù)之間,即mtn,
yf(m)0則有f(t)0
f(n)0
常由根的分布情況來求解出現(xiàn)在a、b、c位置上的參數(shù)
例如:若方程x2(m1)xm2m30有兩個正實數(shù)根,求m的取值范圍。
4(m1)24(m22m3)00m1m1m3解:由①型得02(m1)00m1,或m32m2m3022omX=tb2anx所以方程有兩個正實數(shù)根時,m3。
又如:方程xxm10的一根大于1,另一根小于1,求m的范圍。
55220m(1)4(m1)02解:因為有兩個不同的根,所以由21m122f(1)011m101m122
35、二元一次不等式:含有兩個未知數(shù),并且未知數(shù)的次數(shù)是1的不等式.
36、二元一次不等式組:由幾個二元一次不等式組成的不等式組.
37、二元一次不等式(組)的解集:滿足二元一次不等式組的x和y的取值構(gòu)成有序數(shù)對x,y,所有這樣的有序數(shù)對x,y構(gòu)成的集合.
38、在平面直角坐標系中,已知直線xyC0,坐標平面內(nèi)的點x0,y0.①若0,x0y0C0,則點x0,y0在直線xyC0的上方.②若0,x0y0C0,則點x0,y0在直線xyC0的下方.
39、在平面直角坐標系中,已知直線xyC0.(一)由B確定:①若0,則xyC0表示直線xyC0上方的區(qū)域;xyC0表示直線xyC0下方的區(qū)域.
、谌0,則xyC0表示直線xyC0下方的區(qū)域;xyC0表示直線 xyC0上方的區(qū)域.
。ǘ┯葾的符號來確定:先把x的系數(shù)A化為正后,看不等號方向:①若是“>”號,則xyC0所表示的區(qū)域為直線l:xyC0的右邊部分。②若是“線性規(guī)劃問題:求線性目標函數(shù)在線性約束條件下的最大值或最小值問題.可行解:滿足線性約束條件的解x,y.可行域:所有可行解組成的集合.最優(yōu)解:使目標函數(shù)取得最大值或最小值的可行解.
41、設(shè)a、b是兩個正數(shù),則ab2稱為正數(shù)a、b的算術(shù)平均數(shù),ab稱為正數(shù)a、b的幾何平均數(shù).a(chǎn)b2ab.
42、均值不等式定理:若a0,b0,則ab2ab,即
43、常用的基本不等式:①ab2aba,bR;②ab222ab222a,bR;③abab2a0,b0;2④ab222ab2a,bR.
44、極值定理:設(shè)x、y都為正數(shù),則有:
⑴若xys(和為定值),則當xy時,積xy取得最大值s42.⑵若xyp(積為定值),則當xy時,和xy取得最小值2例題:已知x解:∵x5454p.14x5,求函數(shù)f(x)4x2的最大值。
,∴4x50由原式可以化為:f(x)4x55214x5(54x)154x3[(54x)154x]3(54x)154x3132當54x154x2,即(54x)1x1,或x32(舍去)時取到“=”號也就是說當x1時有f(x)max2
高一數(shù)學知識點總結(jié)13
一、集合有關(guān)概念
1. 集合的含義
2. 集合的中元素的三個特性:
(1) 元素的確定性,
(2) 元素的互異性,
(3) 元素的無序性,
3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2) 集合的表示方法:列舉法與描述法。
? 注意:常用數(shù)集及其記法:
非負整數(shù)集(即自然數(shù)集) 記作:N
正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實數(shù)集R
1) 列舉法:{a,b,c……}
2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}
3) 語言描述法:例:{不是直角三角形的三角形}
4) Venn圖:
4、集合的分類:
(1) 有限集 含有有限個元素的集合
(2) 無限集 含有無限個元素的集合
(3) 空集 不含任何元素的集合 例:{x|x2=-5}
二、集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A
2.“相等”關(guān)系:A=B (5≥5,且5≤5,則5=5)
實例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”
即:① 任何一個集合是它本身的子集。A?A
、谡孀蛹:如果A?B,且A? B那就說集合A是集合B的真子集,記作A B(或B A)
、廴绻 A?B, B?C ,那么 A?C
、 如果A?B 同時 B?A 那么A=B
3. 不含任何元素的集合叫做空集,記為Φ
規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
? 有n個元素的集合,含有2n個子集,2n-1個真子集
三、集合的運算
運算類型 交 集 并 集 補 集
定 義 由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={x|x A,且x B}.
由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:A B(讀作‘A并B’),即A B ={x|x A,或x B}).
設(shè)S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)
二、函數(shù)的有關(guān)概念
1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù).記作: y=f(x),x∈A.其中,x叫做自變量,x的`取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域.
注意:
1.定義域:能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域。
求函數(shù)的定義域時列不等式組的主要依據(jù)是:
(1)分式的分母不等于零;
(2)偶次方根的被開方數(shù)不小于零;
(3)對數(shù)式的真數(shù)必須大于零;
(4)指數(shù)、對數(shù)式的底必須大于零且不等于1.
(5)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.
(6)指數(shù)為零底不可以等于零,
(7)實際問題中的函數(shù)的定義域還要保證實際問題有意義.
相同函數(shù)的判斷方法:①表達式相同(與表示自變量和函數(shù)值的字母無關(guān));②定義域一致 (兩點必須同時具備)
2.值域 : 先考慮其定義域
(1)觀察法
(2)配方法
(3)代換法
3. 函數(shù)圖象知識歸納
(1)定義:在平面直角坐標系中,以函數(shù) y=f(x) , (x∈A)中的x為橫坐標,函數(shù)值y為縱坐標的點P(x,y)的集合C,叫做函數(shù) y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標的點(x,y),均在C上 .
(2) 畫法
A、 描點法:
B、 圖象變換法
常用變換方法有三種
1) 平移變換
2) 伸縮變換
3) 對稱變換
4.區(qū)間的概念
(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間
(2)無窮區(qū)間
(3)區(qū)間的數(shù)軸表示.
5.映射
一般地,設(shè)A、B是兩個非空的集合,如果按某一個確定的對應(yīng)法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應(yīng),那么就稱對應(yīng)f:A B為從集合A到集合B的一個映射。記作f:A→B
6.分段函數(shù)
(1)在定義域的不同部分上有不同的解析表達式的函數(shù)。
(2)各部分的自變量的取值情況.
(3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.
補充:復合函數(shù)
如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的復合函數(shù)。
二.函數(shù)的性質(zhì)
1.函數(shù)的單調(diào)性(局部性質(zhì))
(1)增函數(shù)
設(shè)函數(shù)y=f(x)的定義域為I,如果對于定義域I內(nèi)的某個區(qū)間D內(nèi)的任意兩個自變量x1,x2,當x1
如果對于區(qū)間D上的任意兩個自變量的值x1,x2,當x1f(x2),那么就說f(x)在這個區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調(diào)減區(qū)間.
注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);
(2) 圖象的特點
如果函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.
(3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法
(A) 定義法:
○1 任取x1,x2∈D,且x1
○2 作差f(x1)-f(x2);
○3 變形(通常是因式分解和配方);
○4 定號(即判斷差f(x1)-f(x2)的正負);
○5 下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性).
(B)圖象法(從圖象上看升降)
(C)復合函數(shù)的單調(diào)性
復合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”
注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.
8.函數(shù)的奇偶性(整體性質(zhì))
(1)偶函數(shù)
一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).
(2).奇函數(shù)
一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).
(3)具有奇偶性的函數(shù)的圖象的特征
偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱.
利用定義判斷函數(shù)奇偶性的步驟:
○1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點對稱;
○2確定f(-x)與f(x)的關(guān)系;
○3作出相應(yīng)結(jié)論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數(shù);若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數(shù).
(2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;
(3)利用定理,或借助函數(shù)的圖象判定 .
9、函數(shù)的解析表達式
(1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個變量之間的函數(shù)關(guān)系時,一是要求出它們之間的對應(yīng)法則,二是要求出函數(shù)的定義域.
(2)求函數(shù)的解析式的主要方法有:
1) 湊配法
2) 待定系數(shù)法
3) 換元法
4) 消參法
10.函數(shù)最大(小)值(定義見課本p36頁)
○1 利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值
○2 利用圖象求函數(shù)的最大(小)值
○3 利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值:
如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有最大值f(b);
如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);
高一數(shù)學知識點總結(jié)14
函數(shù)的值域取決于定義域和對應(yīng)法則,不論采取什么方法求函數(shù)的值域都應(yīng)先考慮其定義域。(2)。應(yīng)熟悉掌握一次函數(shù)、二次函數(shù)、指數(shù)、對數(shù)函數(shù)及各三角函數(shù)的值域,它是求解復雜函數(shù)值域的基礎(chǔ)。
函數(shù)圖象知識歸納:
。1)定義:在平面直角坐標系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標,函數(shù)值y為縱坐標的點P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象。
C上每一點的坐標(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標的點(x,y),均在C上。即記為C={P(x,y)|y=f(x),x∈A}
圖象C一般的是一條光滑的連續(xù)曲線(或直線),也可能是由與任意平行與Y軸的直線最多只有一個交點的若干條曲線或離散點組成。
。2)畫法
A、描點法:根據(jù)函數(shù)解析式和定義域,求出x,y的一些對應(yīng)值并列表,以(x,y)為坐標在坐標系內(nèi)描出相應(yīng)的點P(x,y),最后用平滑的曲線將這些點連接起來。
B、圖象變換法(請參考必修4三角函數(shù))
常用變換方法有三種,即平移變換、伸縮變換和對稱變換
。3)作用:
1、直觀的看出函數(shù)的性質(zhì);
2、利用數(shù)形結(jié)合的方法分析解題的思路。提高解題的速度。
3、發(fā)現(xiàn)解題中的錯誤。
2、快去了解區(qū)間的概念
。1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;
(2)無窮區(qū)間;
(3)區(qū)間的數(shù)軸表示。
什么叫做映射
一般地,設(shè)A、B是兩個非空的集合,如果按某一個確定的對應(yīng)法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應(yīng),那么就稱對應(yīng)f:AB為從集合A到集合B的一個映射。記作“f:AB”
給定一個集合A到B的映射,如果a∈A,b∈B。且元素a和元素b對應(yīng),那么,我們把元素b叫做元素a的象,元素a叫做元素b的原象
說明:函數(shù)是一種特殊的映射,映射是一種特殊的對應(yīng):
、偌螦、B及對應(yīng)法則f是確定的;
、趯(yīng)法則有“方向性”,即強調(diào)從集合A到集合B的對應(yīng),它與從B到A的對應(yīng)關(guān)系一般是不同的;
③對于映射f:A→B來說,則應(yīng)滿足:
。á瘢┘螦中的每一個元素,在集合B中都有象,并且象是唯一的;
。á颍┘螦中不同的元素,在集合B中對應(yīng)的象可以是同一個;
。á螅┎灰蠹螧中的每一個元素在集合A中都有原象。
常用的函數(shù)表示法及各自的優(yōu)點:
函數(shù)圖象既可以是連續(xù)的曲線,也可以是直線、折線、離散的點等等,注意判斷一個圖形是否是函數(shù)圖象的依據(jù);2解析法:必須注明函數(shù)的定義域;3圖象法:描點法作圖要注意:確定函數(shù)的定義域;化簡函數(shù)的解析式;觀察函數(shù)的特征;4列表法:選取的自變量要有代表性,應(yīng)能反映定義域的特征。
注意。航馕龇ǎ罕阌谒愠龊瘮(shù)值。列表法:便于查出函數(shù)值。圖象法:便于量出函數(shù)值
補充一:分段函數(shù)(參見課本P24—25)
在定義域的不同部分上有不同的解析表達式的函數(shù)。在不同的范圍里求函數(shù)值時必須把自變量代入相應(yīng)的表達式。分段函數(shù)的解析式不能寫成幾個不同的方程,而就寫函數(shù)值幾種不同的表達式并用一個左大括號括起來,并分別注明各部分的自變量的取值情況。
。1)分段函數(shù)是一個函數(shù),不要把它誤認為是幾個函數(shù);
(2)分段函數(shù)的定義域是各段定義域的`并集,值域是各段值域的并集。
補充二:復合函數(shù)
如果y=f(u),(u∈M),u=g(x),(x∈A),則y=f[g(x)]=F(x),(x∈A)稱為f、g的復合函數(shù)。
例如:y=2sinXy=2cos(X2+1)
函數(shù)單調(diào)性
。1)增函數(shù)
設(shè)函數(shù)y=f(x)的定義域為I,如果對于定義域I內(nèi)的某個區(qū)間D內(nèi)的任意兩個自變量x1,x2,當x1
如果對于區(qū)間D上的任意兩個自變量的值x1,x2,當x1
注意:
1、函數(shù)的單調(diào)性是在定義域內(nèi)的某個區(qū)間上的性質(zhì),是函數(shù)的局部性質(zhì);
2、必須是對于區(qū)間D內(nèi)的任意兩個自變量x1,x2;當x1
。2)圖象的特點
如果函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的
。3)。函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法
。ˋ)定義法:
任取x1,x2∈D,且x1
。˙)圖象法(從圖象上看升降)
(C)復合函數(shù)的單調(diào)性
復合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律如下:
函數(shù)
單調(diào)性
u=g(x)
增
增
減
減
y=f(u)
增
減
增
減
y=f[g(x)]
增
減
減
增
注意:
1、函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集。
2、還記得我們在選修里學習簡單易行的導數(shù)法判定單調(diào)性嗎?
函數(shù)的奇偶性
。1)偶函數(shù)
一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(—x)=f(x),那么f(x)就叫做偶函數(shù)。
(2)奇函數(shù)
一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(—x)=—f(x),那么f(x)就叫做奇函數(shù)。
注意:
1、函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);函數(shù)可能沒有奇偶性,也可能既是奇函數(shù)又是偶函數(shù)。
2、由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個必要條件是,對于定義域內(nèi)的任意一個x,則—x也一定是定義域內(nèi)的一個自變量(即定義域關(guān)于原點對稱)。
。3)具有奇偶性的函數(shù)的圖象的特征
偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱。
總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:
1、首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點對稱;
2、確定f(—x)與f(x)的關(guān)系;
3、作出相應(yīng)結(jié)論:若f(—x)=f(x)或f(—x)—f(x)=0,則f(x)是偶函數(shù);若f(—x)=—f(x)或f(—x)+f(x)=0,則f(x)是奇函數(shù)。
高一數(shù)學知識點總結(jié)15
一、集合有關(guān)概念
1.集合的含義
2.集合的中元素的三個特性:
(1)元素的確定性如:世界上的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合
3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
注意:常用數(shù)集及其記法:
非負整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集:N_或N+
整數(shù)集:Z
有理數(shù)集:Q
實數(shù)集:R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合{xR|x-3>2},{x|x-3>2}
3)語言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類:
(1)有限集含有有限個元素的集合
(2)無限集含有無限個元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)
實例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”
即:①任何一個集合是它本身的子集。AA
②真子集:如果AB,且AB那就說集合A是集合B的真子集,記作AB(或BA)
、廴绻鸄B,BC,那么AC
、苋绻鸄B同時BA那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集個數(shù):
有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集
三、集合的運算
運算類型交集并集補集
定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.
由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).
設(shè)S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)
記作,即
CSA=
AA=A
AΦ=Φ
AB=BA
ABA
ABB
AA=A
AΦ=A
AB=BA
ABA
ABB
(CuA)(CuB)
=Cu(AB)
(CuA)(CuB)
=Cu(AB)
A(CuA)=U
A(CuA)=Φ.
二、函數(shù)的有關(guān)概念
1.函數(shù)的概念
設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.
注意:
1.定義域:能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域。
求函數(shù)的定義域時列不等式組的主要依據(jù)是:
(1)分式的分母不等于零;
(2)偶次方根的被開方數(shù)不小于零;
(3)對數(shù)式的真數(shù)必須大于零;
(4)指數(shù)、對數(shù)式的底必須大于零且不等于1.
(5)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的那么,它的定義域是使各部分都有意義的x的值組成的集合.
(6)指數(shù)為零底不可以等于零,
(7)實際問題中的函數(shù)的定義域還要保證實際問題有意義.
相同函數(shù)的判斷方法:①表達式相同(與表示自變量和函數(shù)值的字母無關(guān));
、诙x域一致(兩點必須同時具備)
2.值域:先考慮其定義域
(1)觀察法(2)配方法(3)代換法
3.函數(shù)圖象知識歸納
(1)定義:
在平面直角坐標系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標,函數(shù)值y為縱坐標的點P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點的坐標(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標的點(x,y),均在C上.
(2)畫法
1.描點法:2.圖象變換法:常用變換方法有三種:1)平移變換2)伸縮變換3)對稱變換
4.區(qū)間的概念
(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間(2)無窮區(qū)間(3)區(qū)間的數(shù)軸表示.
5.映射
一般地,設(shè)A、B是兩個非空的集合,如果按某一個確定的對應(yīng)法則f,使對于集合A中的任意一個元素x,在集合B中都有確定的元素y與之對應(yīng),那么就稱對應(yīng)f:AB為從集合A到集合B的一個映射。記作“f(對應(yīng)關(guān)系):A(原象)B(象)”
對于映射f:A→B來說,則應(yīng)滿足:
(1)集合A中的每一個元素,在集合B中都有象,并且象是的;
(2)集合A中不同的元素,在集合B中對應(yīng)的象可以是同一個;
(3)不要求集合B中的每一個元素在集合A中都有原象。
6.分段函數(shù)
(1)在定義域的不同部分上有不同的解析表達式的函數(shù)。
(2)各部分的自變量的取值情況.
(3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.
補充:復合函數(shù)
如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復合函數(shù)。
二.函數(shù)的.性質(zhì)
1.函數(shù)的單調(diào)性(局部性質(zhì))
(1)增函數(shù)
設(shè)函數(shù)y=f(x)的定義域為I,如果對于定義域I內(nèi)的某個區(qū)間D內(nèi)的任意兩個自變量x1,x2,當x1
如果對于區(qū)間D上的任意兩個自變量的值x1,x2,當x1
注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);
(2)圖象的特點
如果函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的
(3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法
(A)定義法:
(1)任取x1,x2∈D,且x1
(2)作差f(x1)-f(x2);或者做商
(3)變形(通常是因式分解和配方);
(4)定號(即判斷差f(x1)-f(x2)的正負);
(5)下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性).
(B)圖象法(從圖象上看升降)
(C)復合函數(shù)的單調(diào)性
復合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”
注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.
8.函數(shù)的奇偶性(整體性質(zhì))
(1)偶函數(shù):一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).
(2)奇函數(shù):一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).
(3)具有奇偶性的函數(shù)的圖象的特征:偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱.
9.利用定義判斷函數(shù)奇偶性的步驟:
○1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點對稱;
○2確定f(-x)與f(x)的關(guān)系;
○3作出相應(yīng)結(jié)論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù).
注意:函數(shù)定義域關(guān)于原點對稱是函數(shù)具有奇偶性的必要條件.首先看函數(shù)的定義域是否關(guān)于原點對稱,若不對稱則函數(shù)是非奇非偶函數(shù).若對稱,(1)再根據(jù)定義判定;(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;(3)利用定理,或借助函數(shù)的圖象判定.
10、函數(shù)的解析表達式
(1)函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個變量之間的函數(shù)關(guān)系時,一是要求出它們之間的對應(yīng)法則,二是要求出函數(shù)的定義域.
(2)求函數(shù)的解析式的主要方法有:1.湊配法2.待定系數(shù)法3.換元法4.消參法
11.函數(shù)(小)值
○1利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的(小)值
○2利用圖象求函數(shù)的(小)值
○3利用函數(shù)單調(diào)性的判斷函數(shù)的(小)值:
如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有值f(b);
如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);
第三章基本初等函數(shù)
一、指數(shù)函數(shù)
(一)指數(shù)與指數(shù)冪的運算
1.根式的概念:一般地,如果,那么叫做的次方根,其中>1,且∈_.
負數(shù)沒有偶次方根;0的任何次方根都是0,記作。
當是奇數(shù)時,,當是偶數(shù)時,
2.分數(shù)指數(shù)冪
正數(shù)的分數(shù)指數(shù)冪的意義,規(guī)定:
,
0的正分數(shù)指數(shù)冪等于0,0的負分數(shù)指數(shù)冪沒有意義
3.實數(shù)指數(shù)冪的運算性質(zhì)
(1);
(2);
(3).
(二)指數(shù)函數(shù)及其性質(zhì)
1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù),其中x是自變量,函數(shù)的定義域為R.
注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負數(shù)、零和1.
2、指數(shù)函數(shù)的圖象和性質(zhì)
a>10
定義域R定義域R
值域y>0值域y>0
在R上單調(diào)遞增在R上單調(diào)遞減
非奇非偶函數(shù)非奇非偶函數(shù)
函數(shù)圖象都過定點(0,1)函數(shù)圖象都過定點(0,1)
注意:利用函數(shù)的單調(diào)性,結(jié)合圖象還可以看出:
(1)在[a,b]上,值域是或;
(2)若,則;取遍所有正數(shù)當且僅當;
(3)對于指數(shù)函數(shù),總有;
二、對數(shù)函數(shù)
(一)對數(shù)
1.對數(shù)的概念:
一般地,如果,那么數(shù)叫做以為底的對數(shù),記作:(—底數(shù),—真數(shù),—對數(shù)式)
說明:○1注意底數(shù)的限制,且;
○2;
○3注意對數(shù)的書寫格式.
兩個重要對數(shù):
○1常用對數(shù):以10為底的對數(shù);
○2自然對數(shù):以無理數(shù)為底的對數(shù)的對數(shù).
指數(shù)式與對數(shù)式的互化
冪值真數(shù)
=N=b
底數(shù)
指數(shù)對數(shù)
(二)對數(shù)的運算性質(zhì)
如果,且,,,那么:
○1+;
○2-;
○3.
注意:換底公式:(,且;,且;).
利用換底公式推導下面的結(jié)論:(1);(2).
(3)、重要的公式①、負數(shù)與零沒有對數(shù);②、,③、對數(shù)恒等式
(二)對數(shù)函數(shù)
1、對數(shù)函數(shù)的概念:函數(shù),且叫做對數(shù)函數(shù),其中是自變量,函數(shù)的定義域是(0,+∞).
注意:○1對數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別。如:,都不是對數(shù)函數(shù),而只能稱其為對數(shù)型函數(shù).
○2對數(shù)函數(shù)對底數(shù)的限制:,且.
2、對數(shù)函數(shù)的性質(zhì):
a>10
定義域x>0定義域x>0
值域為R值域為R
在R上遞增在R上遞減
函數(shù)圖象都過定點(1,0)函數(shù)圖象都過定點(1,0)
(三)冪函數(shù)
1、冪函數(shù)定義:一般地,形如的函數(shù)稱為冪函數(shù),其中為常數(shù).
2、冪函數(shù)性質(zhì)歸納.
(1)所有的冪函數(shù)在(0,+∞)都有定義并且圖象都過點(1,1);
(2)時,冪函數(shù)的圖象通過原點,并且在區(qū)間上是增函數(shù).特別地,當時,冪函數(shù)的圖象下凸;當時,冪函數(shù)的圖象上凸;
(3)時,冪函數(shù)的圖象在區(qū)間上是減函數(shù).在第一象限內(nèi),當從右邊趨向原點時,圖象在軸右方無限地逼近軸正半軸,當趨于時,圖象在軸上方無限地逼近軸正半軸.
第四章函數(shù)的應(yīng)用
一、方程的根與函數(shù)的零點
1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。
2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。
即:方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.
3、函數(shù)零點的求法:
○1(代數(shù)法)求方程的實數(shù)根;
○2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.
4、二次函數(shù)的零點:
二次函數(shù).
(1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.
(2)△=0,方程有兩相等實根,二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.
(3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點.
【高一數(shù)學知識點總結(jié)】相關(guān)文章:
高一數(shù)學知識點總結(jié)12-06
高一數(shù)學知識點總結(jié)07-07
高一數(shù)學知識點03-28
高一數(shù)學集合知識點07-25
高一數(shù)學知識點總結(jié)(精選15篇)04-28
高一數(shù)學知識點集合07-12
高一數(shù)學知識點框架12-23