蘇教版初一數學上冊知識點
在平時的學習中,很多人都經常追著老師們要知識點吧,知識點也可以通俗的理解為重要的內容。掌握知識點有助于大家更好的學習。以下是小編精心整理的蘇教版初一數學上冊知識點,僅供參考,希望能夠幫助到大家。
蘇教版初一數學上冊知識點1
本章的主要內容可以概括為有理數的概念與有理數的運算兩部分。有理數的概念可以利用數軸來認識、理解,同時,利用數軸又可以把這些概念串在一起。有理數的運算是全章的重點。在具體運算時,要注意四個方面,一是運算法則,二是運算律,三是運算順序,四是近似計算。
基礎知識:
1、正數(positionnumber):大于0的數叫做正數。
2、負數(negationnumber):在正數前面加上負號"-"的數叫做負數。
3、0既不是正數也不是負數。
4、有理數(rationalnumber):正整數、負整數、0、正分數、負分數都可以寫成分數的形式,這樣的數稱為有理數。
5、數軸(numberaxis):通常,用一條直線上的點表示數,這條直線叫做數軸。
數軸滿足以下要求:
。1)在直線上任取一個點表示數0,這個點叫做原點(origin);
。2)通常規(guī)定直線上從原點向右(或上)為正方向,從原點向左(或下)為負方向;
。3)選取適當的長度為單位長度。
6、相反數(oppositenumber):絕對值相等,只有負號不同的兩個數叫做互為相反數。
7、絕對值(absolutevalue)一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值。記做|a|。由絕對值的定義可得:|a-b|表示數軸上a點到b點的距離。一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0.正數大于0,0大于負數,正數大于負數;兩個負數,絕對值大的反而小。
8、有理數加法法則
(1)同號兩數相加,取相同的符號,并把絕對值相加。
。2)絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值;橄喾磾档膬蓚數相加得0.
。3)一個數同0相加,仍得這個數。
加法交換律:有理數的加法中,兩個數相加,交換加數的位置,和不變。表達式:a+b=b+a。
加法結合律:有理數的加法中,三個數相加,先把前兩個數相加或者先把后兩個數相加,和不變。
表達式:(a+b)+c=a+(b+c)
9、有理數減法法則:減去一個數,等于加這個數的相反數。表達式:a-b=a+(-b)
10、有理數乘法法則
兩數相乘,同號得正,異號得負,并把絕對值相乘。
任何數同0相乘,都得0.
乘法交換律:一般地,有理數乘法中,兩個數相乘,交換因數的位置,積相等。表達式:ab=ba
乘法結合律:三個數相乘,先把前兩個數相乘,或者先把后兩個數相乘,積相等。表達式:(ab)c=a(bc)
乘法分配律:一般地,一個數同兩個的和相乘,等于把這個數分別同這兩個數相乘,再把積相加。
表達式:a(b+c)=ab+ac
11、倒數
1除以一個數(零除外)的商,叫做這個數的.倒數。如果兩個數互為倒數,那么這兩個數的積等于1。
12、有理數除法法則:兩數相除,同號得負,異號得正,并把絕對值相除。0除以任何一個不等于0的數,都得0.
13、有理數的乘方:求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪(power)。an中,a叫做底數(basenumber),n叫做指數(exponent)。
根據有理數的乘法法則可以得出:負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何正整數次冪都是0。
14、有理數的混合運算順序
(1)"先乘方,再乘除,最后加減"的順序進行;
。2)同級運算,從左到右進行;
(3)如有括號,先做括號內的運算,按小括號、中括號、大括號依次進行。
15、科學技術法:把一個大于10的數表示成a?10n的形式(其中a是整數數位只有一位的數(即0
16、近似數(approximatenumber):
17、有理數可以寫成m/n(m、n是整數,n≠0)的形式。另一方面,形如m/n(m、n是整數,n≠0)的數都是有理數。所以有理數可以用m/n(m、n是整數,n≠0)表示。
拓展知識:
1、數集:把一些數放在一起,就組成一個數的集合,簡稱數集。
(1)所有有理數組成的數集叫做有理數集;
。2)所有的整數組成的數集叫做整數集。
2、任何有理數都可以用數軸上的一個點來表示,體現了數形結合的數學思想。
3、根據絕對值的幾何意義知道:|a|≥0,即對任何有理數a,它的絕對值是非負數。
4、比較兩個有理數大小的方法有:
。1)根據有理數在數軸上對應的點的位置直接比較;
。2)根據規(guī)定進行比較:兩個正數;正數與零;負數與零;正數與負數;兩個負數,體現了分類討論的數學思想;
。3)做差法:a-b>0——a>b;
。4)做商法:a/b>1,b>0——a>b.
蘇教版初一數學上冊知識點2
1.有理數:
(1)凡能寫成 形式的數,都是有理數.正整數、0、負整數統(tǒng)稱整數;正分數、負分數統(tǒng)稱分數;整數和分數統(tǒng)稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;
(2)有理數的分類: ① ②
2.數軸:
數軸是規(guī)定了原點、正方向、單位長度的一條直線.
3.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;
(2)相反數的和為0 ? a+b=0 ? a、b互為相反數.
4.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
(2) 絕對值可表示為: 或 ;絕對值的問題經常分類討論;
5.有理數比大。
(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大于一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數 > 0,小數-大數 < 0.
6.互為倒數:
乘積為1的兩個數互為倒數;注意:0沒有倒數;若 a≠0,那么 的倒數是 ;若ab=1? a、b互為倒數;若ab=-1? a、b互為負倒數.
7. 有理數加法法則:
(1)同號兩數相加,取相同的符號,并把絕對值相加;
(2)異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數.
8.有理數加法的運算律:
(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).
9.有理數減法法則:
減去一個數,等于加上這個數的相反數;即a-b=a+(-b).
10 有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,并把絕對值相乘;
(2)任何數同零相乘都得零;
(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.
11 有理數乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .
12.有理數除法法則:
除以一個數等于乘以這個數的倒數;注意:零不能做除數, .
13.有理數乘方的`法則:
(1)正數的任何次冪都是正數;
(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時: (-a)n=-an或(a -b)n=-(b-a)n , 當n為正偶數時: (-a)n =an 或 (a-b)n=(b-a)n .
14.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;
15.科學記數法:
把一個大于10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.
16.近似數的精確位:
一個近似數,四舍五入到那一位,就說這個近似數的精確到那一位.
17.有效數字:
從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.
18.混合運算法則:
先乘方,后乘除,最后加減.
蘇教版初一數學上冊知識點3
整式加減由數到式,承前啟后,既是有理數的概括與抽象,又是整式乘除和其他代數式運算的基礎,也是學習方程、不等式和函數的基礎。為了體現本章知識的特殊地位與作用,具有以下幾個特點:
1。充分體現由特殊到一般,由一般到特殊的思維過程,經歷探索數量關系和變化規(guī)律的過程,滲透辯證唯物主義思想。
2。知識呈現過程盡量做到與學生已有生活經驗密切聯(lián)系,如皮球的彈跳高度,傳數游戲等,發(fā)展學生應用數學的意識和能力。
3。讓知識的發(fā)生、發(fā)展過程得以充分暴露,重視基本知識和基本技能的學習。
4。注意發(fā)揮例題和習題的教育功能。加強學科間的縱向聯(lián)系并注意與其他學科的橫向聯(lián)系,擴充學生的知識面,注意適當插入一些開放題,培養(yǎng)發(fā)散思維,適時滲透美育和德育教育。
知識要點1。整式的`有關概念
。1)單項式:表示數與字母的乘積的代數式,叫做單項式,單獨的一個數或一個字母也是單項式,如、2πr、a,0……都是單項式。
。2)多項式:幾個單項式的和叫做多項式。
蘇教版初一數學上冊知識點4
一、多姿多彩的圖形
1.從實物中抽象出的各種圖形統(tǒng)稱為幾何圖形。
2.點、線、面、體
A.點:線和線相交的地方。
B.線:面和面相交的地方,線可分為直線、射線、線段
C.體:正方體、長方體、圓柱、球等都是幾何體,幾何體簡稱體。
D.面:包圍著體的是面,面可分為平的面、曲的面。
二、直線、射線、線段
1.兩點確定一條直線
2.當兩條不同的直線有一個公共點時,我們就稱這兩條直線相交,這個公共點叫做它們的交點。
3.兩點之間,線段最短。
4.連接兩點間的線段的長度,叫做這兩點的距離。
三、角
1.有且只有一個角
2.把一個周角360等分,每一份就是一度的角,記做1°﹔把1度的角60等分,每一份叫做1分的角,記作1′﹔把1分的角60等分,每一份叫做1秒的角,記作1″。
3.角的運算:1周角=360°,1平角=180°,1°=60′,1′=60″
4.角的平分線:A.從一個角的頂點引出一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的角平分線。
B.角平分線上的一點到角的.兩邊距離相等。
四、線段、射線和直線的聯(lián)系與區(qū)別
聯(lián)系:線段、射線、直線是部分與整體的關系.線段向一方無限延長形成了射線,向兩個方向無限延長得到了直線.直線上的兩點和它們之間的部分組成線段,直線上的一點及其一旁的部分是射線,射線反向延長得直線.
蘇教版初一數學上冊知識點5
、俅笥0的數叫正數。
、谠谡龜登懊婕由稀-”號的數,叫做負數。
、0既不是正數也不是負數。0是正數和負數的分界,是唯一的中性數。
、芨闱逑喾匆饬x的量:南北;東西;上下;左右;上升下降;高低;增長減少等。
⑤正整數、0、負整數統(tǒng)稱整數(結合數軸和一元一次方程出題),正分數和負分數統(tǒng)稱分數。整數和分數統(tǒng)稱有理數。
、薹秦摂稻褪钦龜岛土;非負整數就是正整數和0。
、摺盎鶞省鳖}:有固定的基準數,和的求法:基準數×個數+與基準數相比較的`數的代數和;平均數的求法:基準數+與基準數相比較的數的代數和÷個數(寫出原數,也可用小學知識解答);“非基準”題:無固定的基準數,如明天和今天比,后天和明天比。
蘇教版初一數學上冊知識點6
①審題:弄清題目和題目中的數量關系,分清已知和未知,適當設出未知數x;
、谡页瞿軌虮硎緫脝栴}全部含義的'一個相等關系,從而列出方程;③解所列的方程并檢驗后寫出答案。
列方程解應用題主要有三個困難:
、僬也坏较嗟汝P系;
、谡业较嗟汝P系后不會列方程;
、哿晳T于用小學的算術解法,對于代數解法(列方程解應用題)分析應用題不適應,不知道要抓相等關系。解決這些困難就要養(yǎng)成分析問題的習慣,通過列表格,畫直線圖等方法找到相等關系。并且對于題目中的條件要充分利用,不要漏掉,且題目中的條件每個只能用一次,不能重復利用。否則,列出的就是一個恒等式,而不是一個方程。
蘇教版初一數學上冊知識點7
七年級上冊數學知識點總結之有理數及其運算板塊:
1、整數包含正整數和負整數,分數包含正分數和負分數。正整數和正分數通稱為正數,負整數和負分數通稱為負數。
2、正整數、0、負整數、正分數、負分數這樣的數稱為有理數。
3、絕對值:數軸上一個數所對應的點與原點的距離叫做該數的絕對值,用“||”表示。
七年級上冊數學知識點總結之整式板塊:
1、單項式:由數與字母的乘積組成的式子叫做單項式。
2、單項式的次數:一個單項式中,所有字母的指數的.和叫做這個單項式的次數。
3、整式:單項式與多項式統(tǒng)稱整式。
4、同類項:字母相同,并且相同字母的指數也相同的項叫做同類項。
七年級上冊數學知識點總結之一元一次方程。
1、含有未知數的等式叫做方程,使方程左右兩邊的值都相等的未知數的值叫做方程的解。
2、移項:把等式一邊的某項變號后移到另一邊,叫做移項等。
其實,七年級上冊數學知識點總結還包括很多,但是我想,萬變不離其宗。
大家平時要注意整理與積累。配合多加練習。一些知識要點及時記錄在筆記本上,一些錯題也要及時整理、復習。一個個知識點去通過。我相信只要做個有心人,就可以在數學考試中取得高分。
蘇教版初一數學上冊知識點8
實數:—有理數與無理數統(tǒng)稱為實數。
有理數:整數和分數統(tǒng)稱為有理數。
無理數:無理數是指無限不循環(huán)小數。
自然數:表示物體的個數0、1、2、3、4~(0包括在內)都稱為自然數。
數軸:規(guī)定了圓點、正方向和單位長度的直線叫做數軸。
相反數:符號不同的兩個數互為相反數。
倒數:乘積是1的兩個數互為倒數。
絕對值:數軸上表示數a的點與圓點的`距離稱為a的絕對值。一個正數的絕對值是本身,一個負數的絕對值是它的相反數,0的絕對值是0。
蘇教版初一數學上冊知識點9
數軸的三要素:原點、正方向、單位長度(三者缺一不可)。
任何一個有理數,都可以用數軸上的一個點來表示。(反過來,不能說數軸上所有的點都表示有理數)
如果兩個數只有符號不同,那么我們稱其中一個數為另一個數的相反數,也稱這兩個數互為相反數。(0的相反數是0)
在數軸上,表示互為相反數的兩個點,位于原點的側,且到原點的距離相等。
數軸上兩點表示的數,右邊的總比左邊的大。正數在原點的右邊,負數在原點的左邊。
絕對值的定義:一個數a的絕對值就是數軸上表示數a的點與原點的距離。數a的絕對值記作|a|。
正數的絕對值是它本身;負數的絕對值是它的.數;0的絕對值是0。
或
絕對值的性質:除0外,絕對值為一正數的數有兩個,它們互為相反數;
互為相反數的兩數(除0外)的絕對值相等;
任何數的絕對值總是非負數,即|a|0
比較兩個負數的大小,絕對值大的反而小。比較兩個負數的大小的步驟如下:
、傧惹蟪鰞蓚數負數的絕對值;
、诒容^兩個絕對值的大小;
③根據兩個負數,絕對值大的反而小做出正確的判斷。
絕對值的性質:
、賹θ魏斡欣頂礱,都有|a|0
、谌魘a|=0,則|a|=0,反之亦然
、廴魘a|=b,則a=b
④對任何有理數a,都有|a|=|-a|
有理數加法法則:
、偻杻蓴迪嗉,取相同符號,并把絕對值相加。
、诋愄杻蓴迪嗉,絕對值相等時和為0;絕對值不等時取絕對值較大的數的符號,并用較大數的絕對值減去較小數的絕對值。
、垡粋數同0相加,仍得這個數。
加法的交換律、結合律在有理數運算中同樣適用。
靈活運用運算律,使用運算簡化,通常有下列規(guī)律:
、倩橄喾吹膬蓚數,可以先相加;
、诜栂嗤臄,可以先相加;
③分母相同的數,可以先相加;
、軒讉數相加能得到整數,可以先相加。
有理數減法法則:
減去一個數,等于加上這個數的相反數。
有理數減法運算時注意兩變:
、俑淖冞\算符號;
②改變減數的性質符號(變?yōu)橄喾磾?
有理數減法運算時注意一個不變:被減數與減數的位置不能變換,也就是說,減法沒有交換律。
有理數的加減法混合運算的步驟:
、賹懗墒÷约犹柕拇鷶岛汀T谝粋算式中,若有減法,應由有理數的減法法則轉化為加法,然后再省略加號和括號;
、诶眉臃▌t,加法交換律、結合律簡化計算。
(注意:減去一個數等于加上這個數的相反數,當有減法統(tǒng)一成加法時,減數應變成它本身的相反數。)
有理數乘法法則:①兩數相乘,同號得正,異號得負,絕對值相乘。
、谌魏螖蹬c0相乘,積仍為0。
如果兩個數互為倒數,則它們的乘積為1。(如:-2與 、 等)
乘法的交換律、結合律、分配律在有理數運算中同樣適用。
有理數乘法運算步驟:①先確定積的符號;
、谇蟪龈饕驍档慕^對值的積。
乘積為1的兩個有理數互為倒數。注意:
、倭銢]有倒數
、谇蠓謹档牡箶担褪前逊謹档姆肿臃帜割嵉刮恢。一個帶分數要先化成假分數。
③正數的倒數是正數,負數的倒數是負數。
有理數除法法則:
、賰蓚有理數相除,同號得正,異號得負,并把絕對值相除。
、0除以任何非0的數都得0。0不可作為除數,否則無意義。
有理數的乘方
注意:
①一個數可以看作是本身的一次方,如5=51;
②當底數是負數或分數時,要先用括號將底數括上,再在右上角寫指數。
乘方的運算性質:
、僬龜档娜魏未蝺缍际钦龜;
、谪摂档钠娲蝺缡秦摂担摂档呐即蝺缡钦龜;
、廴魏螖档呐紨荡蝺缍际欠秦摂;
、1的任何次冪都得1,0的任何次冪都得0;
⑤-1的偶次冪得1;-1的奇次冪得-1;
、拊谶\算過程中,首先要確定冪的符號,然后再計算冪的絕對值。
有理數混合運算法則:①先算乘方,再算乘除,最后算加減。
、谌绻欣ㄌ,先算括號里面的。
蘇教版初一數學上冊知識點10
(一)多姿多彩的圖形
立體圖形:棱柱、棱錐、圓柱、圓錐、球等.
1、幾何圖形
平面圖形:三角形、四邊形、圓等.
主(正)視圖---------從正面看
2、幾何體的三視圖 側(左、右)視圖-----從左(右)邊看
俯視圖---------------從上面看
(1)會判斷簡單物體(直棱柱、圓柱、圓錐、球)的三視圖.
(2)能根據三視圖描述基本幾何體或實物原型.
3、立體圖形的平面展開圖
(1)同一個立體圖形按不同的方式展開,得到的平現圖形不一樣的.
(2)了解直棱柱、圓柱、圓錐、的平面展開圖,能根據展開圖判斷和制作立體模型.
4、點、線、面、體
(1)幾何圖形的組成
點:線和線相交的地方是點,它是幾何圖形最基本的圖形.
線:面和面相交的地方是線,分為直線和曲線.
面:包圍著體的是面,分為平面和曲面.
體:幾何體也簡稱體.
(2)點動成線,線動成面,面動成體.
(二)直線、射線、線段
1、基本概念
圖形 直線 射線 線段
端點個數 無 一個 兩個
表示法 直線a
直線AB(BA) 射線AB 線段a
線段AB(BA)
作法敘述 作直線AB;
作直線a 作射線AB 作線段a;
作線段AB;
連接AB
延長敘述 不能延長 反向延長射線AB 延長線段AB;
反向延長線段BA
2、直線的性質
經過兩點有一條直線,并且只有一條直線.
簡單地:兩點確定一條直線.
3、畫一條線段等于已知線段
(1)度量法
(2)用尺規(guī)作圖法
4、線段的大小比較方法
(1)度量法
(2)疊合法
5、線段的中點(二等分點)、三等分點、四等分點等
定義:把一條線段平均分成兩條相等線段的點.
圖形:
A M B
符號:若點M是線段AB的中點,則AM=BM=AB,AB=2AM=2BM.
6、線段的性質
兩點的所有連線中,線段最短.簡單地:兩點之間,線段最短.
7、兩點的距離
連接兩點的線段長度叫做兩點的距離.
8、點與直線的位置關系
(1)點在直線上 (2)點在直線外.
(三)角
1、角:由公共端點的兩條射線所組成的圖形叫做角.
2、角的表示法(四種):
3、角的度量單位及換算
4、角的`分類
∠β 銳角 直角 鈍角 平角 周角
范圍 0<∠β<90° ∠β=90° 90°<∠β<180° ∠β=180° ∠β=360°
5、角的比較方法
(1)度量法
(2)疊合法
6、角的和、差、倍、分及其近似值
7、畫一個角等于已知角
(1)借助三角尺能畫出15°的倍數的角,在0~180°之間共能畫出11個角.
(2)借助量角器能畫出給定度數的角.
(3)用尺規(guī)作圖法.
8、角的平線線
定義:從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線叫做角的平分線.
圖形:
符號:
9、互余、互補
(1)若∠1+∠2=90°,則∠1與∠2互為余角.其中∠1是∠2的余角,∠2是∠1的余角.
(2)若∠1+∠2=180°,則∠1與∠2互為補角.其中∠1是∠2的補角,∠2是∠1的補角.
(3)余(補)角的性質:等角的補(余)角相等.
10、方向角
(1)正方向
(2)北(南)偏東(西)方向
(3)東(
蘇教版初一數學上冊知識點11
本章的主要內容是圖形的初步認識,從生活周圍熟悉的物體入手,對物體的形狀的認識從感性逐步上升到抽象的幾何圖形。通過從不同方向看立體圖形和展開立體圖形,初步認識立體圖形與平面圖形的聯(lián)系。在此基礎上,認識一些簡單的平面圖形——直線、射線、線段和角。
一、目標與要求
1.能從現實物體中抽象得出幾何圖形,正確區(qū)分立體圖形與平面圖形;能把一些立體圖形的問題,轉化為平面圖形進行研究和處理,探索平面圖形與立體圖形之間的關系。
2.經歷探索平面圖形與立體圖形之間的關系,發(fā)展空間觀念,培養(yǎng)提高觀察、分析、抽象、概括的能力,培養(yǎng)動手操作能力,經歷問題解決的過程,提高解決問題的能力。
3.積極參與教學活動過程,形成自覺、認真的學習態(tài)度,培養(yǎng)敢于面對學習困難的精神,感受幾何圖形的美感;倡導自主學習和小組合作精神,在獨立思考的基礎上,能從小組交流中獲益,并對學習過程進行正確評價,體會合作學習的重要性。
二、知識框架
三、重點
從現實物體中抽象出幾何圖形,把立體圖形轉化為平面圖形是重點;
正確判定圍成立體圖形的面是平面還是曲面,探索點、線、面、體之間的關系是重點;
畫一條線段等于已知線段,比較兩條線段的長短是一個重點,在現實情境中,了解線段的性質“兩點之間,線段最短”是另一個重點。
四、難點
立體圖形與平面圖形之間的轉化是難點;
探索點、線、面、體運動變化后形成的圖形是難點;
畫一條線段等于已知線段的尺規(guī)作圖方法,正確比較兩條線段長短是難點。
五、知識點、概念總結
1.幾何圖形:點、線、面、體這些可幫助人們有效的刻畫錯綜復雜的世界,它們都稱為幾何圖形。從實物中抽象出的各種圖形統(tǒng)稱為幾何圖形。有些幾何圖形的各部分不在同一平面內,叫做立體圖形。有些幾何圖形的各部分都在同一平面內,叫做平面圖形。雖然立體圖形與平面圖形是兩類不同的幾何圖形,但它們是互相聯(lián)系的。
2.幾何圖形的分類:幾何圖形一般分為立體圖形和平面圖形。
3.直線:幾何學基本概念,是點在空間內沿相同或相反方向運動的軌跡。從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標系中的一個二元一次方程所表示的圖形。求兩條直線的交點,只需把這兩個二元一次方程聯(lián)立求解,當這個聯(lián)立方程組無解時,二直線平行;有無窮多解時,二直線重合;只有一解時,二直線相交于一點。常用直線與X軸正向的夾角(叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對于X軸)的傾斜程度。
4.射線:在歐幾里德幾何學中,直線上的一點和它一旁的部分所組成的圖形稱為射線或半直線。
5.線段:指一個或一個以上不同線素組成一段連續(xù)的或不連續(xù)的圖線,如實線的線段或由“長劃、短間隔、點、短間隔、點、短間隔”組成的雙點長劃線的線段。
線段有如下性質:兩點之間線段最短。
6.兩點間的距離:連接兩點間線段的長度叫做這兩點間的距離。
7.端點:直線上兩個點和它們之間的部分叫做線段,這兩個點叫做線段的端點。
線段用表示它兩個端點的字母或一個小寫字母表示,有時這些字母也表示線段長度,記作線段AB或線段BA,線段a。其中AB表示直線上的任意兩點。
8.直線、射線、線段區(qū)別:直線沒有距離。射線也沒有距離。因為直線沒有端點,射線只有一個端點,可以無限延長。
9.角:具有公共端點的兩條不重合的射線組成的圖形叫做角。這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。
一條射線繞著它的端點從一個位置旋轉到另一個位置所形成的圖形叫做角。所旋轉射線的端點叫做角的頂點,開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊。
10.角的靜態(tài)定義:具有公共端點的兩條不重合的射線組成的圖形叫做角。這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。
11.角的動態(tài)定義:一條射線繞著它的端點從一個位置旋轉到另一個位置所形成的圖形叫做角。所旋轉射線的端點叫做角的頂點,開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊
12.角的.符號:角的符號:∠
13.角的種類:角的大小與邊的長短沒有關系;角的大小決定于角的兩條邊張開的程度,張開的越大,角就越大,相反,張開的越小,角則越小。在動態(tài)定義中,取決于旋轉的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負角、正角、優(yōu)角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。
銳角:大于0°,小于90°的角叫做銳角。
直角:等于90°的角叫做直角。
鈍角:大于90°而小于180°的角叫做鈍角。
平角:等于180°的角叫做平角。
優(yōu)角:大于180°小于360°叫優(yōu)角。
劣角:大于0°小于180°叫做劣角,銳角、直角、鈍角都是劣角。
周角:等于360°的角叫做周角。
負角:按照順時針方向旋轉而成的角叫做負角。
正角:逆時針旋轉的角為正角。
0角:等于零度的角。
余角和補角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補角。等角的余角相等,等角的補角相等。
對頂角:兩條直線相交后所得的只有一個公共頂點且兩個角的兩邊互為反向延長線,這樣的兩個角叫做互為對頂角。兩條直線相交,構成兩對對頂角;閷斀堑膬蓚角相等。
還有許多種角的關系,如內錯角,同位角,同旁內角(三線八角中,主要用來判斷平行)!
14.幾何圖形分類
(1)立體幾何圖形可以分為以下幾類:
第一類:柱體;
包括:圓柱和棱柱,棱柱又可分為直棱柱和斜棱柱,棱柱體按底面邊數的多少又可分為三棱柱、四棱柱、N棱柱;
棱柱體積統(tǒng)一等于底面面積乘以高,即V=SH,
第二類:錐體;
包括:圓錐體和棱錐體,棱錐分為三棱錐、四棱錐以及N棱錐;
棱錐體積統(tǒng)一為V=SH/3,
第三類:球體;
此分類只包含球一種幾何體,
體積公式V=4πR3/3,
其他不常用分類:圓臺、棱臺、球冠等很少接觸到。
大多幾何體都由這些幾何體組成。
(2)平面幾何圖形如何分類
a.圓形
b.多邊形:三角形(分為一般三角形,直角三角形,等腰三角形,等邊三角形)、四邊形(分為不規(guī)則四邊形,體形,平行四邊形,平行四邊形又分:矩形,菱形,正方形)、五邊形、六……
注:正方形既是矩形也是菱形
蘇教版初一數學上冊知識點12
直線:一條拉緊的細線向兩方無限延伸就是直線。
直線表示法①兩大寫字母法如直線AB或直線BA(字母無順序性)
②小寫字母法如直線a
直線特征:
、僦本向兩方無限延伸
、谥本沒有粗細不能度量長短。
、蹆牲c確定一條直線
、軆芍本相交只有一個交點。
、葜本無端點但有無數個點
點與直線的位置關系:①點在直線上(也可說直線經過點)
②點在直線外(也可說直線不經過點)
直線公理:過兩點有一條直線,并且只有一條直線。(兩點確定一條直線)
蘇教版初一數學上冊知識點13
同類項的概念:所含字母相同,并且相同字母的指數也相同的項叫做同類項。幾個常數項也叫同類項。
判斷幾個單項式或項,是否是同類項的兩個標準:
、偎帜赶嗤。
②相同字母的次數也相同。
判斷同類項時與系數無關,與字母排列的順序也無關。
合并同類項的`概念:把多項式中的同類項合并成一項叫做合并同類項。
合并同類項的法則:同類項的系數相加,所得結果作為系數,字母和字母的指數不變。
合并同類項步驟:
。1)準確的找出同類項。
。2)逆用分配律,把同類項的系數加在一起(用小括號),字母和字母的指數不變。
。3)寫出合并后的結果。
合并同類項時注意:
(1)如果兩個同類項的系數互為相反數,合并同類項后,結果為0
(2)不要漏掉不能合并的項。
(3)只要不再有同類項,就是結果(可能是單項式,也可能是多項式)。
(4)不是同類項千萬不能進行合并。
蘇教版初一數學上冊知識點14
一.線段、射線、直線
※1.正確理解直線、射線、線段的概念以及它們的區(qū)別:
名稱圖形表示方法端點長度
直線直線AB(或BA)
直線l無端點無法度量
射線射線OM1個無法度量
線段線段AB(或BA)
線段l2個可度量長度
※2.直線公理:經過兩點有且只有一條直線.
二.比較線段的長短
※1.線段公理:兩點間線段最短;兩之間線段的長度叫做這兩點之間的距離.
※2.比較線段長短的兩種方法:
、賵A規(guī)截取比較法;
、诳潭瘸叨攘勘容^法.
※3.用刻度尺可以畫出線段的中點,線段的和、差、倍、分;
用圓規(guī)可以畫出線段的和、差、倍.
三.角的度量與表示
※1.角:有公共端點的兩條射線組成的圖形叫做角;
這個公共端點叫做角的.頂點;
這兩條射線叫做角的邊.
※2.角的表示法:角的符號為“∠”
蘇教版初一數學上冊知識點15
第一章 有理數
1.正數和負數
2.有理數
3.有理數的加減
4.有理數的乘除
5.有理數的乘方
重點:數軸、相反數、絕對值、有理數計算、科學計數法、有效數字
難點:絕對值
易錯點:絕對值、有理數計算
中考必考:科學計數法、相反數(選擇題)
第二章 整式的'加減
1.整式
2.整式的加減
重點:單項式與多項式的概念及系數和次數的確定、同類項、整式加減
難點:單項式與多項式的系數和次數的確定、合并同類項
易錯點:合并同類項、計算失誤、整數次數的確定
中考必考:同類項、整數系數次數的確定、整式加減
第三章 一元一次方程
1.從算式到方程
2.解一元一次方程----合并同類項與移項
3.解一元一次方程----去括號去分母
4.實際問題與一元一次方程
重點:一元一次方程(定義、解法、應用)
難點:一元一次方程的解法(步驟)
易錯點:去分母時,不含有分母項易漏乘、解應用題時,不知道如何找等量關系
第四章 圖形認識實步
1.多姿多彩的圖形
2.直線、射線、線段
3.角
4.課題實習----設計制作長方形形狀的包裝紙盒
重點:直線、射線、線段、角的認識、中點和角平分線的相關計算、余角和補角,方位角等
難點:中點和角平分線的相關計算、余角和補角的應用
易錯點:等量關系不會轉化、審題不清
【初一數學上冊知識點】相關文章:
初一數學上冊知識點07-14
初一數學知識點上冊07-14
初一數學知識點上冊07-16
初一數學上冊知識點07-15
蘇教版初一數學上冊知識點07-21
初一數學上冊知識點整理01-26
初一數學上冊知識點歸納01-26
初一數學上冊知識點總結11-23
初一數學上冊知識點[優(yōu)]07-21