小學奧數(shù)公式推薦大全
“奧數(shù)”是奧林匹克數(shù)學競賽的簡稱。1934年—1935年,前蘇聯(lián)開始在列寧格勒和莫斯科舉辦中學數(shù)學競賽,并冠以數(shù)學奧林匹克競賽的名稱,1959年在布加勒斯特舉辦第一屆國際數(shù)學奧林匹克競賽。下面是小編整理的小學奧數(shù)公式推薦大全,供大家參考借鑒,希望可以幫助到有需要的朋友。
普數(shù)和奧數(shù)
1、 每份數(shù)×份數(shù)=總數(shù) 總數(shù)÷每份數(shù)=份數(shù)總數(shù)÷份數(shù)=每份數(shù)
2、 1倍數(shù)×倍數(shù)=幾倍數(shù) 幾倍數(shù)÷1倍數(shù)=倍數(shù)幾倍數(shù)÷倍數(shù)=1倍數(shù)
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數(shù)量=總價 總價÷單價=數(shù)量 總價÷數(shù)量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率
6、 加數(shù)+加數(shù)=和 和-一個加數(shù)=另一個加數(shù)
7、 被減數(shù)-減數(shù)=差 被減數(shù)-差=減數(shù) 差+減數(shù)=被減數(shù)
8、 因數(shù)×因數(shù)=積 積÷一個因數(shù)=另一個因數(shù)
9、 被除數(shù)÷除數(shù)=商 被除數(shù)÷商=除數(shù) 商×除數(shù)=被除數(shù)
圖形計算公式:
1 、正方形
C周長 S面積 a邊長
周長=邊長×4 C=4a
面積=邊長×邊長
2 、正方體
V:體積 a:棱長
表面積=棱長×棱長×6 S表=a×a×6
體積=棱長×棱長×棱長 V=a×a×a
3 、長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 、長方體
V:體積 s:面積 a:長 b: 寬 h:高 . |
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
奧數(shù)常用公式:
和差問題的公式
(和+差)÷2=大數(shù)
(和-差)÷2=小數(shù)
和倍問題
和÷(倍數(shù)-1)=小數(shù)
小數(shù)×倍數(shù)=大數(shù)
(或者 和-小數(shù)=大數(shù))
差倍問題
差÷(倍數(shù)-1)=小數(shù)
小數(shù)×倍數(shù)=大數(shù)
(或 小數(shù)+差=大數(shù))
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
、湃绻诜欠忾]線路的兩端都要植樹,那么:
全長=株距×(株數(shù)-1)
株距=全長÷(株數(shù)-1)
、迫绻诜欠忾]線路的一端要植樹,另一端不要植樹,那么:
株數(shù)=段數(shù)=全長÷株距
全長=株距×株數(shù)
株距=全長÷株數(shù)
、侨绻诜欠忾]線路的兩端都不要植樹,那么
株數(shù)=段數(shù)-1=全長÷株距-1
全長=株距×(株數(shù)+1)
株距=全長÷(株數(shù)+1) .
2 封閉線路上的植樹問題的數(shù)量關系如下
株數(shù)=段數(shù)=全長÷株距
全長=株距×株數(shù)
株距=全長÷株數(shù)
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數(shù)
(大盈-小盈)÷兩次分配量之差=參加分配的份數(shù)
(大虧-小虧)÷兩次分配量之差=參加分配的份數(shù)
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
濃度問題
溶質(zhì)的重量+溶劑的重量=溶液的重量
溶質(zhì)的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質(zhì)的重量
溶質(zhì)的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%
利息=本金×利率×時間
稅后利息=本金×利率×時間×(1-20%)
長度單位換算:
1千米=1000米 1米=10分米 )
1分米=10厘米 1米=100厘米
1厘米=10毫米
面積單位換算
1平方千米=100公頃
1公頃=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米 .
體(容)積單位換算
1立方米=1000立方分米
1立方分米=1000立方厘米 :
1立方分米=1升 .
1立方厘米=1毫升
1立方米=1000升
重量單位換算:
1噸=1000 千克
1千克=1000克
1千克=1公斤
人民幣單位換算
1元=10角
1角=10分
1元=100分
時間單位換算
1世紀=100年 1年=12月
大月(31天)有:135781012月
小月(30天)的有:46911月
平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分 ,
1分=60秒 1時=3600秒
幾何形體周長 面積 體積計算公式
1、長方形的周長=(長+寬)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah :
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
3 k5 } ^3 d% @8 c3 # f* Z* j! R
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑
平均數(shù)問題公式
總數(shù)量÷總份數(shù)=平均數(shù)。
盈虧問題公式
(1)一次有余(盈),一次不夠(虧),可用公式:
。ㄓ+虧)÷(兩次每人分配數(shù)的差)=人數(shù)。
例如,“小朋友分桃子,每人10個少9個,每人8個多7個。問:有多少個小朋友和多少個桃子?”
解(7+9)÷(10-8)=16÷2=8(個)………………人數(shù)
10×8-9=80-9=71(個)………………………桃子
或8×8+7=64+7=71(個)
。2)兩次都有余(盈),可用公式:
。ù笥-小盈)÷(兩次每人分配數(shù)的差)=人數(shù)。
例如,“士兵背子彈作行軍訓練,每人背45發(fā),多680發(fā);若每人背50發(fā),則還多200發(fā)。問:有士兵多少人?有子彈多少發(fā)?”
解:(680-200)÷(50-45)=480÷5=96(人)
45×96+680=5000(發(fā))或50×96+200=5000(發(fā))
。3)兩次都不夠(虧),可用公式:
。ù筇-小虧)÷(兩次每人分配數(shù)的差)=人數(shù)。
例如,“將一批本子發(fā)給學生,每人發(fā)10本,差90本;若每人發(fā)8本,則仍差8本。有多少學生和多少本本子?”
解(90-8)÷(10-8)=82÷2=41(人)
10×41-90=320(本)
。4)一次不夠(虧),另一次剛好分完,可用公式:
虧÷(兩次每人分配數(shù)的差)=人數(shù)。
(5)一次有余(盈),另一次剛好分完,可用公式:
盈÷(兩次每人分配數(shù)的差)=人數(shù)。
面積、體積換算公式
。1)1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米
(2)1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米
。3)1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米
。4)1公頃=10000平方米1畝=666.666平方米
。5)1升=1立方分米=1000毫升1毫升=1立方厘米
一般行程問題公式
平均速度×時間=路程;
路程÷時間=平均速度;
路程÷平均速度=時間。
同向行程問題公式
追及(拉開)路程÷(速度差)=追及(拉開)時間;
追及(拉開)路程÷追及(拉開)時間=速度差;
。ㄋ俣炔睿磷芳埃ɡ_)時間=追及(拉開)路程。
反向行程問題公式
反向行程問題可以分為“相遇問題”(二人從兩地出發(fā),相向而行)和“相離問題”(兩人背向而行)兩種。這兩種題,都可用下面的公式解答:
。ㄋ俣群停料嘤觯x)時間=相遇(離)路程;
相遇(離)路程÷(速度和)=相遇(離)時間;
相遇(離)路程÷相遇(離)時間=速度和。
列車過橋問題公式
。蜷L+列車長)÷速度=過橋時間;
(橋長+列車長)÷過橋時間=速度;
速度×過橋時間=橋、車長度之和。
行船問題公式
。1)一般公式:
靜水速度(船速)+水流速度(水速)=順水速度;
船速-水速=逆水速度;
。標俣+逆水速度)÷2=船速;
。標俣-逆水速度)÷2=水速。
。2)兩船相向航行的公式:
甲船順水速度+乙船逆水速度=甲船靜水速度+乙船靜水速度
。3)兩船同向航行的公式:
后(前)船靜水速度-前(后)船靜水速度=兩船距離縮。ɡ螅┧俣。
。ㄇ蟪鰞纱嚯x縮小或拉大速度后,再按上面有關的公式去解答題目)。
工程問題公式
。1)一般公式:
工效×工時=工作總量;
工作總量÷工時=工效;
工作總量÷工效=工時。
。2)用假設工作總量為“1”的方法解工程問題的公式:
1÷工作時間=單位時間內(nèi)完成工作總量的幾分之幾;
1÷單位時間能完成的幾分之幾=工作時間。
(注意:用假設法解工程題,可任意假定工作總量為2、3、4、5……。特別是假定工作總量為幾個工作時間的最小公倍數(shù)時,分數(shù)工程問題可以轉化為比較簡單的整數(shù)工程問題,計算將變得比較簡便。)
求比較數(shù)應用題公式
標準數(shù)×分(百分)率=與分率對應的比較數(shù);
標準數(shù)×增長率=增長數(shù);
標準數(shù)×減少率=減少數(shù);
標準數(shù)×(兩分率之和)=兩個數(shù)之和;
標準數(shù)×(兩分率之差)=兩個數(shù)之差。
求標準數(shù)應用題公式
比較數(shù)÷與比較數(shù)對應的分(百分)率=標準數(shù);
增長數(shù)÷增長率=標準數(shù);
減少數(shù)÷減少率=標準數(shù);
兩數(shù)和÷兩率和=標準數(shù);
兩數(shù)差÷兩率差=標準數(shù);
方陣問題公式
(1)實心方陣:(外層每邊人數(shù))2=總人數(shù)。
(2)空心方陣:
。ㄗ钔鈱用窟吶藬(shù))2-(最外層每邊人數(shù)-2×層數(shù))2=中空方陣的人數(shù)。
或者是
。ㄗ钔鈱用窟吶藬(shù)-層數(shù))×層數(shù)×4=中空方陣的人數(shù)。
總人數(shù)÷4÷層數(shù)+層數(shù)=外層每邊人數(shù)。
例如,有一個3層的中空方陣,最外層有10人,問全陣有多少人?
解一先看作實心方陣,則總人數(shù)有
10×10=100(人)
再算空心部分的方陣人數(shù)。從外往里,每進一層,每邊人數(shù)少2,則進到第四層,每邊人數(shù)是
10-2×3=4(人)
所以,空心部分方陣人數(shù)有
4×4=16(人)
故這個空心方陣的人數(shù)是
100-16=84(人)
解二直接運用公式。根據(jù)空心方陣總人數(shù)公式得
。10-3)×3×4=84(人)
利率問題公式
利率問題的類型較多,現(xiàn)就常見的單利、復利問題,介紹其計算公式如下。
。1)單利問題:
本金×利率×時期=利息;
本金×(1+利率×時期)=本利和;
本利和÷(1+利率×時期)=本金。
年利率÷12=月利率;
月利率×12=年利率。
(2)復利問題:
本金×(1+利率)存期期數(shù)=本利和。
例如,“某人存款2400元,存期3年,月利率為10.2‰(即月利1分零2毫),三年到期后,本利和共是多少元?”
解(1)用月利率求。
3年=12月×3=36個月
2400×(1+10.2%×36)
=2400×1.3672
=3281.28(元)
。2)用年利率求。
先把月利率變成年利率:
10.2‰×12=12.24%
再求本利和:
2400×(1+12.24%×3)
=2400×1.3672
=3281.28(元)(答略)
雞兔問題公式
。1)已知總頭數(shù)和總腳數(shù),求雞、兔各多少:
。ǹ偰_數(shù)-每只雞的腳數(shù)×總頭數(shù))÷(每只兔的腳數(shù)-每只雞的腳數(shù))=兔數(shù);
總頭數(shù)-兔數(shù)=雞數(shù)。
或者是(每只兔腳數(shù)×總頭數(shù)-總腳數(shù))÷(每只兔腳數(shù)-每只雞腳數(shù))=雞數(shù);
總頭數(shù)-雞數(shù)=兔數(shù)。
例如,“有雞、兔共36只,它們共有腳100只,雞、兔各是多少只?”
解一(100-2×36)÷(4-2)=14(只)………兔;
36-14=22(只)……………………………雞。
解二(4×36-100)÷(4-2)=22(只)………雞;
36-22=14(只)…………………………兔。
。ù鹇裕
(2)已知總頭數(shù)和雞兔腳數(shù)的差數(shù),當雞的總腳數(shù)比兔的總腳數(shù)多時,可用公式
。恐浑u腳數(shù)×總頭數(shù)-腳數(shù)之差)÷(每只雞的腳數(shù)+每只兔的腳數(shù))=兔數(shù);
總頭數(shù)-兔數(shù)=雞數(shù)
或(每只兔腳數(shù)×總頭數(shù)+雞兔腳數(shù)之差)÷(每只雞的腳數(shù)+每只免的腳數(shù))=雞數(shù);
總頭數(shù)-雞數(shù)=兔數(shù)。(例略)
。3)已知總數(shù)與雞兔腳數(shù)的差數(shù),當兔的總腳數(shù)比雞的總腳數(shù)多時,可用公式。
。恐浑u的腳數(shù)×總頭數(shù)+雞兔腳數(shù)之差)÷(每只雞的腳數(shù)+每只兔的腳數(shù))=兔數(shù);
總頭數(shù)-兔數(shù)=雞數(shù)。
或(每只兔的腳數(shù)×總頭數(shù)-雞兔腳數(shù)之差)÷(每只雞的腳數(shù)+每只兔的腳數(shù))=雞數(shù);
總頭數(shù)-雞數(shù)=兔數(shù)。(例略)
。4)得失問題(雞兔問題的推廣題)的解法,可以用下面的公式:
(1只合格品得分數(shù)×產(chǎn)品總數(shù)-實得總分數(shù))÷(每只合格品得分數(shù)+每只不合格品扣分數(shù))=不合格品數(shù)。或者是總產(chǎn)品數(shù)-(每只不合格品扣分數(shù)×總產(chǎn)品數(shù)+實得總分數(shù))÷(每只合格品得分數(shù)+每只不合格品扣分數(shù))=不合格品數(shù)。
例如,“燈泡廠生產(chǎn)燈泡的工人,按得分的多少給工資。每生產(chǎn)一個合格品記4分,每生產(chǎn)一個不合格品不僅不記分,還要扣除15分。某工人生產(chǎn)了1000只燈泡,共得3525分,問其中有多少個燈泡不合格?”
解一(4×1000-3525)÷(4+15)
=475÷19=25(個)
解二1000-(15×1000+3525)÷(4+15)
。1000-18525÷19
=1000-975=25(個)(答略)
(“得失問題”也稱“運玻璃器皿問題”,運到完好無損者每只給運費××元,破損者不僅不給運費,還需要賠成本××元……。它的解法顯然可套用上述公式。)
。5)雞兔互換問題(已知總腳數(shù)及雞兔互換后總腳數(shù),求雞兔各多少的問題),可用下面的公式:
〔(兩次總腳數(shù)之和)÷(每只雞兔腳數(shù)和)+(兩次總腳數(shù)之差)÷(每只雞兔腳數(shù)之差)〕÷2=雞數(shù);
〔(兩次總腳數(shù)之和)÷(每只雞兔腳數(shù)之和)-(兩次總腳數(shù)之差)÷(每只雞兔腳數(shù)之差)〕÷2=兔數(shù)。
例如,“有一些雞和兔,共有腳44只,若將雞數(shù)與兔數(shù)互換,則共有腳52只。雞兔各是多少只?”
解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2
=20÷2=10(只)……………………………雞
〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2
=12÷2=6(只)…………………………兔(答略)
人民幣單位換算
1元=10角
1角=10分
1元=100分
時間單位換算:
1世紀=100年1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天,閏年2月29天
平年全年365天,閏年全年366天
1日=24小時1時=60分
1分=60秒1時=3600秒
求分率、百分率問題的公式
比較數(shù)÷標準數(shù)=比較數(shù)的對應分(百分)率;
增長數(shù)÷標準數(shù)=增長率;
減少數(shù)÷標準數(shù)=減少率。
或者是
兩數(shù)差÷較小數(shù)=多幾(百)分之幾(增);
兩數(shù)差÷較大數(shù)=少幾(百)分之幾(減)。
增減分(百分)率互求公式
增長率÷(1+增長率)=減少率;
減少率÷(1-減少率)=增長率。
比甲丘面積少幾分之幾?”
解這是根據(jù)增長率求減少率的應用題。按公式,可解答為“百分之幾?”
【小學奧數(shù)公式】相關文章:
小學奧數(shù)常用公式07-12
小學奧數(shù)的常見公式08-11
小學奧數(shù)常用公式整理06-17
小學奧數(shù)公式整理大全08-14
小升初奧數(shù)公式知識08-08
44個小學奧數(shù)必考公式 08-01
小學奧數(shù)應用題公式07-24
小升初不可錯過的奧數(shù)公式09-15
小升初奧數(shù)行程問題基本公式整理06-08