- 相關(guān)推薦
高中數(shù)學(xué)解題技巧
一般說來,對于題目的熟悉程度,取決于對題目自身結(jié)構(gòu)的認(rèn)識和理解。從結(jié)構(gòu)上來分析,任何一道解答題,都包含條件和結(jié)論(或問題)兩個(gè)方面。下面是小編分享給大家的高中數(shù)學(xué)解題技巧的資料,希望大家喜歡!
常用的途徑有
(一)、充分聯(lián)想回憶基本知識和題型:
按照波利亞的觀點(diǎn),在解決問題之前,我們應(yīng)充分聯(lián)想和回憶與原有問題相同或相似的知識點(diǎn)和題型,充分利用相似問題中的方式、方法和結(jié)論,從而解決現(xiàn)有的問題。
(二)、全方位、多角度分析題意:
對于同一道數(shù)學(xué)題,常?梢圆煌膫(cè)面、不同的角度去認(rèn)識。因此,根據(jù)自己的知識和經(jīng)驗(yàn),適時(shí)調(diào)整分析問題的視角,有助于更好地把握題意,找到自己熟悉的解題方向。
(三)恰當(dāng)構(gòu)造輔助元素:
數(shù)學(xué)中,同一素材的題目,常?梢杂胁煌谋憩F(xiàn)形式;條件與結(jié)論(或問題)之間,也存在著多種聯(lián)系方式。因此,恰當(dāng)構(gòu)造輔助元素,有助于改變題目的形式,溝通條件與結(jié)論(或條件與問題)的內(nèi)在聯(lián)系,把陌生題轉(zhuǎn)化為熟悉題。
數(shù)學(xué)解題中,構(gòu)造的輔助元素是多種多樣的,常見的有構(gòu)造圖形(點(diǎn)、線、面、體),構(gòu)造算法,構(gòu)造多項(xiàng)式,構(gòu)造方程(組),構(gòu)造坐標(biāo)系,構(gòu)造數(shù)列,構(gòu)造行列式,構(gòu)造等價(jià)性命題,構(gòu)造反例,構(gòu)造數(shù)學(xué)模型等等。
高考數(shù)學(xué)解題思想一:函數(shù)與方程思想
函數(shù)思想是指運(yùn)用運(yùn)動(dòng)變化的觀點(diǎn),分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,通過建立函數(shù)關(guān)系(或構(gòu)造函數(shù))運(yùn)用函數(shù)的圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題和解決問題;方程思想,是從問題的數(shù)量關(guān)系入手,運(yùn)用數(shù)學(xué)語言將問題轉(zhuǎn)化為方程(方程組)或不等式模型(方程、不等式等)去解決問題。利用轉(zhuǎn)化思想我們還可進(jìn)行函數(shù)與方程間的相互轉(zhuǎn)化。
高考數(shù)學(xué)解題思想二:數(shù)形結(jié)合思想
中學(xué)數(shù)學(xué)研究的對象可分為兩大部分,一部分是數(shù),一部分是形,但數(shù)與形是有聯(lián)系的,這個(gè)聯(lián)系稱之為數(shù)形結(jié)合或形數(shù)結(jié)合。它既是尋找問題解決切入點(diǎn)的“法寶”,又是優(yōu)化解題途徑的“良方”,因此我們在解答數(shù)學(xué)題時(shí),能畫圖的盡量畫出圖形,以利于正確地理解題意、快速地解決問題。
高考數(shù)學(xué)解題思想三:特殊與一般的思想
用這種思想解選擇題有時(shí)特別有效,這是因?yàn)橐粋(gè)命題在普遍意義上成立時(shí),在其特殊情況下也必然成立,根據(jù)這一點(diǎn),我們可以直接確定選擇題中的正確選項(xiàng)。不僅如此,用這種思想方法去探求主觀題的求解策略,也同樣精彩。
高考數(shù)學(xué)解題思想四:極限思想解題步驟
極限思想解決問題的一般步驟為:(1)對于所求的未知量,先設(shè)法構(gòu)思一個(gè)與它有關(guān)的變量;(2)確認(rèn)這變量通過無限過程的結(jié)果就是所求的未知量;(3)構(gòu)造函數(shù)(數(shù)列)并利用極限計(jì)算法則得出結(jié)果或利用圖形的極限位置直接計(jì)算結(jié)果。
高考數(shù)學(xué)解題思想五:分類討論思想
我們常常會(huì)遇到這樣一種情況,解到某一步之后,不能再以統(tǒng)一的方法、統(tǒng)一的式子繼續(xù)進(jìn)行下去,這是因?yàn)楸谎芯康膶ο蟀硕喾N情況,這就需要對各種情況加以分類,并逐類求解,然后綜合歸納得解,這就是分類討論。引起分類討論的原因很多,數(shù)學(xué)概念本身具有多種情形,數(shù)學(xué)運(yùn)算法則、某些定理、公式的限制,圖形位置的不確定性,變化等均可能引起分類討論。在分類討論解題時(shí),要做到標(biāo)準(zhǔn)統(tǒng)一,不重不漏。
a、三角函數(shù)與向量解題技巧
平移問題:永遠(yuǎn)記住左右平移只是對x做變化,上下平移就是對y考點(diǎn):對于這類題型我們首先要知道它一般都是考我們什么,我覺做變化,永遠(yuǎn)切記。
b、概率解題技巧
它主要是考我們向量的數(shù)量積以及三角函數(shù)的化簡問題看,同時(shí)可能會(huì)涉及到正余弦考點(diǎn):對文科生來說,這個(gè)類型的題主要是考我們對題目意思的定理,難度一般不大。理解,在解題過程能學(xué)
只要你能熟練掌握公式,這類題都不是問題。會(huì)樹狀圖和列表,題目也是相當(dāng)?shù)暮唵危灰隳軐忣}準(zhǔn)確,這類題型:這部分大題一般都是涉及以下的題型:題都是送分題;對理
最值(值域)、單調(diào)性、周期性、對稱性、未知數(shù)的取值范圍、平移科生來說,主要注意結(jié)合排列組合、獨(dú)立重復(fù)試驗(yàn)知識點(diǎn),同時(shí)會(huì)問題等要求我們準(zhǔn)確掌握分
解題思路:布列、期望、方差的公式,難度也是不大,都屬于送分題,是要求第一步就是根根據(jù)向量公式將表示出來:其表示共有兩種方法,一我們必須拿全部分?jǐn)?shù)。
種是模長公式(該種方法是在題目沒有告訴坐標(biāo)的情況下應(yīng)用),題型:在這里我就不多說了,都是求概率,沒有什么新穎的地方,另一種就是用坐標(biāo)公式表示出來(該種方法是在題目告訴了坐標(biāo)),不過要注意我們曾經(jīng)
即在這里遇到過的線性規(guī)劃問題,還有就是籃球成功率與命中率和防第二步就是三角函數(shù)的化簡:化簡的方法都是涉及到三角函數(shù)的誘守率之間關(guān)系的類似
導(dǎo)公式(只要題目出現(xiàn)了跟或者有關(guān)的角度,一定想到誘導(dǎo)公式),題目。
解題思路:
第一步就是求出總體的情況
第二步就是求出符合題意的情況
第三步就是將兩者比起來就是題目要求的概率
這類型題目對理科生來說一定要掌握好期望與方差的公式,同時(shí)最重要的是獨(dú)立重復(fù)試驗(yàn)概率的求法。
c、幾何解題技巧
考點(diǎn):這類題主要是考察咱們對空間物體的感覺,希望大家在平時(shí)學(xué)習(xí)過程中,多培養(yǎng)一些立體的、空間的感覺,將自己設(shè)身處地于那么一個(gè)立體的空間中去,這類題對文科生來說,難度都比較簡單,但是對理科生來說,可能會(huì)比較復(fù)雜一些,特別是在二面角的求法上,對理科生來說是一個(gè)巨大的挑戰(zhàn),它需要理科生能對兩個(gè)面夾角培養(yǎng)出感情來,這樣輔助線的做法以及邊長的求法就變得如此之簡單了。
題型:
這種題型分為兩類:第一類就是證明題,也就是證明平行(線面平行、面面平行),第二類就是證明垂直(線線垂直、線面垂直、面面垂直);第二就是計(jì)算題,包括棱錐體的體積公式計(jì)算、點(diǎn)到面的距離、有關(guān)二面角的計(jì)算(理科生掌握)
解題思路:
證線面平行如直線與面有兩種方法:一種方法是在面中找到一條線與平行即可(一般情況下沒有現(xiàn)成的線存在,這個(gè)時(shí)候需要我們在面做一條輔助線去跟線平行,一般這條輔助線的作法就是找中點(diǎn));另一種方法就是過直線作一個(gè)平面與面平行即可,輔助面的作法也基本上是找中點(diǎn)。
證面面平行:這類題比較簡單,即證明這兩個(gè)平面的兩條相交線對應(yīng)平行即可。
證線面垂直如直線與面:這類型的題主要是看有前提沒有,即如果直線所在的平面與面在題目中已經(jīng)告訴我們是垂直關(guān)系了,那么我們只需要證明直線垂直于面與面的交線即可;如果題目中沒有說直線所在的平面與面是垂直的關(guān)系,那么我們需要證明直線垂直面內(nèi)的兩條相交線即可。
其實(shí)說實(shí)話,證明垂直的問題都是很簡單的,一般都有什么勾股定理呀,還有更多的是根據(jù)一個(gè)定理(一條直線垂直于一個(gè)面,那么這條直線就垂直這個(gè)面的任何一條線)來證明垂直。
證面面垂直與證面面垂直:這類問題也比較簡單,就是需要轉(zhuǎn)化為證線面垂直即可。
體積和點(diǎn)到面的距離計(jì)算:如果是三棱錐的體積要注意等體積法公式的應(yīng)用,一般情況就是考這個(gè)東西,沒有什么難度的,關(guān)鍵是高的尋找,一定要注意,只要你找到了高你就勝利了。除了三棱錐以外的其他錐體不要用等體積法了哈,等體積法是三棱錐的專利。二面角的計(jì)算:這類型對理科生來說是一個(gè)噩夢,其難度有二,第一是首先你要找到二面角在什么地方,另一個(gè)難度就是你要知道這個(gè)二面角所在直角三角形的邊長分別是多少。
二面角(面與面)的找法主要是遵循以下步驟:首先找到從一個(gè)面的頂點(diǎn)A出發(fā)引向另一個(gè)面的垂線,垂足為B,然后過垂足B向這兩個(gè)面的交線做垂線,垂足為C,最后將A點(diǎn)與C點(diǎn)連接起來,這樣即為二面角(說白了就是應(yīng)用三垂線定理來找)
二面角所在直角三角形的邊長求法:一般應(yīng)用勾股定理,相似三角形,等面積法,正余弦定理等。
這里我著重說一下就是在題目中可能會(huì)出現(xiàn)這樣的情況,就是兩個(gè)面的相交處是一個(gè)點(diǎn),這個(gè)時(shí)候需要我們過這個(gè)點(diǎn)補(bǔ)充完整兩個(gè)面的交線,不知道怎么補(bǔ)交線的跟我說一聲。
d、圓錐曲線解題技巧
考點(diǎn):這類題型,其實(shí)難度真的不是很大,我個(gè)人理解主要是考大家的計(jì)算能力怎么樣,還有就是對題目的理解能力,同時(shí)也希望大家都能明白圓錐曲線中a,b,c,e的含義以及他們之間的關(guān)系,還有就是橢圓、雙曲線、拋物線的兩種定義,如果你現(xiàn)在還不知道,趁早去記一下,不然考試的時(shí)候都不知道的哈,我真的無語了。
題型:這種類型的題一般都是以下幾種出法:第一個(gè)問一般情況就是求圓錐曲線方程或者就是求某一個(gè)點(diǎn)的軌跡方程,第二個(gè)問一般都是涉及到直線的問題,要么就是求范圍,要么就是求定值,要么就是求直線方程
解題思路:
求圓錐曲線方程:一般情況下題目有兩種求法,一種就是直接根據(jù)題目條件來求解(如題目告訴你曲線的離心率和過某一個(gè)點(diǎn)坐標(biāo)),另一種就是隱含的告訴我們橢圓的定義,然后讓我們?nèi)プ聊テ渲械囊馑,去寫出曲線的方程,這種問法就比較難點(diǎn),其實(shí)也主要是看我們的基本功底怎么樣,對基礎(chǔ)扎實(shí)的同學(xué)來說,這種問法也不是問題的。
求軌跡方程:這種問題需要我們首先對要求點(diǎn)的坐標(biāo)設(shè)出來A(x,y),然后用A點(diǎn)表示出題目中某一已知點(diǎn)B的坐標(biāo),然后用表示出來的點(diǎn)坐標(biāo)代入點(diǎn)B的軌跡方程中,這樣就可以求出A點(diǎn)的軌跡方程了,一般求出來都是圓錐曲線方程,如果不是,你就可能錯(cuò)了。直線與圓錐曲線問題:三個(gè)步驟你還知道嗎(一設(shè)、二代,三韋達(dá))。
先做完這個(gè)三個(gè)步驟,然后看題目給了我們什么條件,然后對條件進(jìn)行化簡(一般的條件都是跟向量呀,斜率呀什么的聯(lián)系起來,希望大家注意點(diǎn)),在化簡的過程中我們需要代韋達(dá)進(jìn)去運(yùn)算,如果我們在運(yùn)算的過程中遇到了,一定要記得應(yīng)用直線方程將表示出來,然后根據(jù)韋達(dá)化簡到最后結(jié)果。最后看題目問我們什么,如果問定值,你還知道怎么做么,不知道的就現(xiàn)在來問我,如果問我們范圍,你還知道有一個(gè)東西么,如果問直線方程,你求出來的直線斜率有兩個(gè),還知道怎么做么,如果要想舍去其中一個(gè),你還記得一個(gè)東西么。同時(shí)如果你是一個(gè)追求完美的人,我希望你在做題的時(shí)候考慮到直線斜率存在與否的問題,如果你覺得你心胸開闊,那點(diǎn)分?jǐn)?shù)我不要了,我考慮斜率存不存在的問題,那么我就說你牛!!
個(gè)人理解的話,圓錐曲線都不是很難的,就是計(jì)算量比較復(fù)雜了一點(diǎn),但是只要我們用心、專心點(diǎn),都是可以做出來的,不信你慢慢的去嘗試看看!
e、函數(shù)導(dǎo)數(shù)解題技巧
考點(diǎn):這種類型的題主要是考大家對導(dǎo)數(shù)公式的應(yīng)用,導(dǎo)數(shù)的含義,明確導(dǎo)數(shù)可以用來干什么,如果你都不知道導(dǎo)數(shù)可以用來干什么,你還談什么做題呢。在導(dǎo)數(shù)這塊,我是希望大家都能盡量的多拿一些分?jǐn)?shù),因?yàn)槠潆y度不是很大,主要你用心去學(xué)習(xí)了,記住方法了,這個(gè)分?jǐn)?shù)對我們來說都是可以小菜一碟的。
題型:
最值、單調(diào)性(極值)、未知數(shù)的取值范圍(不等式)、未知數(shù)的取值范圍(交點(diǎn)或者零點(diǎn))
解題思路:
最值、單調(diào)性(極值):首先對原函數(shù)求導(dǎo),然后令導(dǎo)函數(shù)為零求出極值點(diǎn),然后畫出表格判斷出在各個(gè)區(qū)間的單調(diào)性,最后得出結(jié)論。未知數(shù)的取值范圍(不等式):其實(shí)它就是一種一種變相的求最值問題,不知道大家還記得么,記住我講課的表情,未知數(shù)放在一邊,把已知的數(shù)放在另外一邊,求出相應(yīng)的最值,咱們就勝利了,這個(gè)種看起來很復(fù)雜,其實(shí)很簡單,你說呢。
未知數(shù)的取值范圍(交點(diǎn)或者零點(diǎn)):這種要是沒有掌握方法的人,覺得:哇,怎么就那么難呀,其實(shí)不然,很簡單的,只是各位你要明確這種題的解題思路哈。首先還是需要我們把要求的未知數(shù)放在一邊,把知道的數(shù)放在一邊去,這樣去求出已知數(shù)的最值,然后簡單的畫一個(gè)圖形我們就可以分析出未知數(shù)的取值范圍了,說起來也挺簡單的,如果有什么不了解的,可以馬上問我,不要留下遺憾。
f、數(shù)列解題技巧
考點(diǎn):
對于數(shù)列,我對大家的要求不是很高,我只是希望大家能盡自己的所能,盡量的去多拿分?jǐn)?shù),如果要是有人能全部做對,我也替你高興,這類題型,主要是考大家對等比等差數(shù)列的理解,包括通項(xiàng)與求和,難度還是有的,其實(shí)你要是留意生活的話,這類題還是不是我們想象中那么困難哈。
題型:
一般分為證明和計(jì)算(包括通項(xiàng)公式、求和、比較大小),解題思路:
證明:就是要求我們證明一個(gè)數(shù)列是等比數(shù)列后還是等差數(shù)列,這種題的做法有兩種,一種是用,或者,我們就可以證明其為一個(gè)等差數(shù)列或者等比數(shù)列。另一種方法就是應(yīng)用等差中項(xiàng)或者等比中項(xiàng)來證明數(shù)列。
計(jì)算(通項(xiàng)公式):一般這個(gè)題都還是比較簡單的,這類型的題,我只要求大家能掌握其中題目表達(dá)式的關(guān)鍵字眼(如出現(xiàn)要用什么方法,如果出現(xiàn)要用什么方法,如果出現(xiàn)如果出現(xiàn)),我相信通項(xiàng)公式對大家來說應(yīng)該是達(dá)到駕輕就熟的地步了,希望大家能把握這么容易的分?jǐn)?shù)。
求和:這種題對文科生來說,應(yīng)該知道我要說什么了吧,王福叉數(shù)列(等比等差數(shù)列)呀!!,三個(gè)步驟:乘公比,錯(cuò)位相減,化系數(shù)為一。光是記住步驟沒有用的,同時(shí)我也希望同學(xué)們不要眼高手低,不要以為很簡單的,其實(shí)真正能算正確的不一定那么容易的,所以我還是希望大家多加練習(xí),親自操作一下。對理科生來說,也要注意這樣的數(shù)列求和,同時(shí)還要掌握一種數(shù)列求和,就是這個(gè)數(shù)列求和是將其中的一個(gè)等差或等比數(shù)列按照一定的順序抽調(diào)了一部分?jǐn)?shù)列,然后構(gòu)成一個(gè)新的數(shù)列求和,還有就是要注意了如果題目里面涉及到這個(gè)的時(shí)候,一定要記住數(shù)列相互奇偶性的討論了,非常的重要哈。
比較大。哼@種題目我對大家的要求很低,因?yàn)橐话愣际欠趴s法的問題,我也不是要求大家非要怎么樣怎么樣的,對這類問題需要我們的基本功底很深,要學(xué)會(huì)適當(dāng)?shù)姆糯蠛头判〉膯栴},對這個(gè)問題的把握,需要大家對一些經(jīng)常遇到的放縮公式印在腦海里面。
補(bǔ)充:在不是導(dǎo)數(shù)的其他大題中,如果遇到求最值的問題,一般有兩種方法求解,一種是二次函數(shù)求最值,一種就是基本不等式求最值。
幾何概型
【考點(diǎn)分析】
在段考中,多以選擇題和填空題的形式考查幾何概型的計(jì)算公式等知識點(diǎn),也會(huì)以解答題的形式考查。在高考中有時(shí)會(huì)以選擇題和填空題的形式考查幾何概型的計(jì)算公式,有時(shí)也不考,一般屬于中檔題。
【知識點(diǎn)誤區(qū)】
求幾何概型時(shí),注意首先尋找到一些重要的臨界位置,再解答。一般與線性規(guī)劃知識有聯(lián)系。
【同步練習(xí)題】
1.已知函數(shù)f(x)=log2x,若在[1,8]上任取一個(gè)實(shí)數(shù)x0,則不等式1≤f(x0)≤2成立的概率是.
解析:區(qū)間[1,8]的長度為7,滿足不等式1≤f(x0)≤2即不等式1≤log2x0≤2,解答2≤x0≤4,對應(yīng)區(qū)間[2,4]長度為2,由幾何概型公式可得使不等式1≤f(x0)≤2成立的概率是27.
點(diǎn)評:本題考查了幾何概型問題,其與線段上的區(qū)間長度及函數(shù)被不等式的解法問題相交匯,使此類問題具有一定的靈活性,關(guān)鍵是明確集合測度,本題利用區(qū)間長度的比求幾何概型的概率.
2.在區(qū)間[-3,5]上隨機(jī)取一個(gè)數(shù)a,則使函數(shù)f(x)=x2+2ax+4無零點(diǎn)的概率是.
解析:由已知區(qū)間[-3,5]長度為8,使函數(shù)f(x)=x2+2ax+4無零點(diǎn)即判別式Δ=4a2-16<0,解得-2點(diǎn)評:本題屬于幾何概型,只要求出區(qū)間長度以及滿足條件的區(qū)間長度,由幾何概型公式解答.
高三數(shù)學(xué)立體幾何知識點(diǎn)復(fù)習(xí)
學(xué)好立幾并不難,空間想象是關(guān)鍵。點(diǎn)線面體是一家,共筑立幾百花園。
點(diǎn)在線面用屬于,線在面內(nèi)用包含。四個(gè)公理是基礎(chǔ),推證演算巧周旋。
空間之中兩條線,平行相交和異面。線線平行同方向,等角定理進(jìn)空間。
判定線和面平行,面中找條平行線。已知線與面平行,過線作面找交線。
要證面和面平行,面中找出兩交線,線面平行若成立,面面平行不用看。
已知面與面平行,線面平行是必然;若與三面都相交,則得兩條平行線。
判定線和面垂直,線垂面中兩交線。兩線垂直同一面,相互平行共伸展。
兩面垂直同一線,一面平行另一面。要讓面與面垂直,面過另面一垂線。
面面垂直成直角,線面垂直記心間。
一面四線定射影,找出斜射一垂線,線線垂直得巧證,三垂定理風(fēng)采顯。
空間距離和夾角,平行轉(zhuǎn)化在平面,一找二證三構(gòu)造,三角形中求答案。
引進(jìn)向量新工具,計(jì)算證明開新篇?臻g建系求坐標(biāo),向量運(yùn)算更簡便。
知識創(chuàng)新無止境,學(xué)問思辨勇攀登。
多面體和旋轉(zhuǎn)體,上述內(nèi)容的延續(xù)。扮演載體新角色,位置關(guān)系全在里。
算面積來求體積,基本公式是依據(jù)。規(guī)則形體用公式,非規(guī)形體靠化歸。
展開分割好辦法,化難為易新天地。
高中數(shù)學(xué)選擇題的解題方法
方法一:直接法
所謂直接法,就是直接從題設(shè)的條件出發(fā),運(yùn)用有關(guān)的概念、定義、性質(zhì)、定理、法則和公式等知識,通過嚴(yán)密的推理與計(jì)算來得出題目的結(jié)論,然后再對照題目所給的四個(gè)選項(xiàng)來“對號入座”.其基本策略是由因?qū)Ч,直接求?
方法二:特例法
特例法的理論依據(jù)是:命題的一般性結(jié)論為真的先決條件是它的特殊情況為真,即普通性寓于特殊性之中,所謂特例法,就是用特殊值(特殊圖形、特殊位置)代替題設(shè)普遍條件,得出特殊結(jié)論,對各個(gè)選項(xiàng)進(jìn)行檢驗(yàn),從而作出正確的判斷.常用的特例有取特殊數(shù)值、特殊數(shù)列、特殊函數(shù)、特殊圖形、特殊角、特殊位置等.這種方法實(shí)際是一種“小題小做”的解題策略,對解答某些選擇題有時(shí)往往十分奏效.
注意:
在題設(shè)條件都成立的情況下,用特殊值(取得越簡單越好)進(jìn)行探求,從而清晰、快捷地得到正確的答案,即通過對特殊情況的研究來判斷一般規(guī)律,是解答本類選擇題的較佳策略.近幾年高考選擇題中可用或結(jié)合特例法來解答的約占30%.因此,特例法是求解選擇題的好招.
方法三:排除法
數(shù)學(xué)選擇題的解題本質(zhì)就是去偽存真,舍棄不符合題目要求的選項(xiàng),找到符合題意的正確結(jié)論.篩選法(又叫排除法)就是通過觀察分析或推理運(yùn)算各項(xiàng)提供的信息或通過特例,對于錯(cuò)誤的選項(xiàng),逐一剔除,從而獲得正確的結(jié)論.
注意:
排除法適應(yīng)于定性型或不易直接求解的選擇題.當(dāng)題目中的條件多于一個(gè)時(shí),先根據(jù)某些條件在選項(xiàng)中找出明顯與之矛盾的,予以否定,再根據(jù)另一些條件在縮小選項(xiàng)的范圍內(nèi)找出矛盾,這樣逐步篩選,直到得出正確的答案.它與特例法、圖解法等結(jié)合使用是解選擇題的常用方法,近幾年高考選擇題中占有很大的比重.
方法四:數(shù)形結(jié)合法
數(shù)形結(jié)合,其實(shí)質(zhì)是將抽象的數(shù)學(xué)語言與直觀的圖形結(jié)合起來,使抽象思維與形象思維結(jié)合起來,通過對圖形的處理,發(fā)揮直觀對抽象的支持作用,實(shí)現(xiàn)抽象概念與具體形象的聯(lián)系和轉(zhuǎn)化,化難為易,化抽象為直觀.
方法五:估算法
在選擇題中作準(zhǔn)確計(jì)算不易時(shí),可根據(jù)題干提供的信息,估算出結(jié)果的大致取值范圍,排除錯(cuò)誤的選項(xiàng).對于客觀性試題,合理的估算往往比盲目的準(zhǔn)確計(jì)算和嚴(yán)謹(jǐn)推理更為有效,可謂“一葉知秋”.
方法六:綜合法
當(dāng)單一的解題方法不能使試題迅速獲解時(shí),我們可以將多種方法融為一體,交叉使用,試題便能迎刃而解.根據(jù)題干提供的信息,不易找到解題思路時(shí),我們可以從選項(xiàng)里找解題靈感.
高中數(shù)學(xué)的證明題的推理方法
一、合情推理
1.歸納推理是由部分到整體,由個(gè)別到一般的推理,在進(jìn)行歸納時(shí),要先根據(jù)已知的部分個(gè)體,把它們適當(dāng)變形,找出它們之間的聯(lián)系,從而歸納出一般結(jié)論;
2.類比推理是由特殊到特殊的推理,是兩類類似的對象之間的推理,其中一個(gè)對象具有某個(gè)性質(zhì),則另一個(gè)對象也具有類似的性質(zhì)。在進(jìn)行類比時(shí),要充分考慮已知對象性質(zhì)的推理過程,然后類比推導(dǎo)類比對象的性質(zhì)。
二、演繹推理
演繹推理是由一般到特殊的推理,數(shù)學(xué)的證明過程主要是通過演繹推理進(jìn)行的,只要采用的演繹推理的大前提、小前提和推理形式是正確的,其結(jié)論一定是正確,一定要注意推理過程的正確性與完備性。
三、直接證明與間接證明
直接證明是相對于間接證明說的,綜合法和分析法是兩種常見的直接證明。綜合法一般地,利用已知條件和某些數(shù)學(xué)定義、定理、公理等,經(jīng)過一系列的推理論證,最后推導(dǎo)出所要證明的結(jié)論成立,這種證明方法叫做綜合法(或順推證法、由因?qū)Ч?。分析法一般地,從要證明的結(jié)論出發(fā),逐步尋求使它成立的充分條件,直至最后,把要證明的結(jié)論歸結(jié)為判定一個(gè)明顯成立的條件(已知條件、定理、定義、公理等)為止,這種證明方法叫做分析法。
間接證明是相對于直接證明說的,反證法是間接證明常用的方法。假設(shè)原命題不成立,經(jīng)過正確的推理,最后得出矛盾,因此說明假設(shè)錯(cuò)誤,從而證明原命題成立,這種證明方法叫做反證法。
四、數(shù)學(xué)歸納法
數(shù)學(xué)上證明與自然數(shù)N有關(guān)的命題的一種特殊方法,它主要用來研究與正整數(shù)有關(guān)的數(shù)學(xué)問題,在高中數(shù)學(xué)中常用來證明等式成立和數(shù)列通項(xiàng)公式成立。
數(shù)學(xué)答題技巧及方法
做題時(shí),有一些“條件反射”你應(yīng)該記住,這能幫你大大的節(jié)省時(shí)間!具體的看看下面吧!對你一定有幫助哦!
1、函數(shù)或方程或不等式的題目,先直接思考后建立三者的聯(lián)系。首先考慮定義域,其次使用“三合一定理”。
2、如果在方程或是不等式中出現(xiàn)超越式,優(yōu)先選擇數(shù)形結(jié)合的思想方法;
3、面對含有參數(shù)的初等函數(shù)來說,在研究的時(shí)候應(yīng)該抓住參數(shù)沒有影響到的不變的性質(zhì)。如所過的定點(diǎn),二次函數(shù)的對稱軸或是……;
4、選擇與填空中出現(xiàn)不等式的題目,優(yōu)選特殊值法;
5、求參數(shù)的取值范圍,應(yīng)該建立關(guān)于參數(shù)的等式或是不等式,用函數(shù)的定義域或是值域或是解不等式完成,在對式子變形的過程中,優(yōu)先選擇分離參數(shù)的方法;
6、恒成立問題或是它的反面,可以轉(zhuǎn)化為最值問題,注意二次函數(shù)的應(yīng)用,靈活使用閉區(qū)間上的最值,分類討論的思想,分類討論應(yīng)該不重復(fù)不遺漏;
7、圓錐曲線的題目優(yōu)先選擇它們的定義完成,直線與圓錐曲線相交問題,若與弦的中點(diǎn)有關(guān),選擇設(shè)而不求點(diǎn)差法,與弦的中點(diǎn)無關(guān),選擇韋達(dá)定理公式法;使用韋達(dá)定理必須先考慮是否為二次及根的判別式;
8、求曲線方程的題目,如果知道曲線的形狀,則可選擇待定系數(shù)法,如果不知道曲線的形狀,則所用的步驟為建系、設(shè)點(diǎn)、列式、化簡(注意去掉不符合條件的特殊點(diǎn));
9、求橢圓或是雙曲線的離心率,建立關(guān)于a、b、c之間的關(guān)系等式即可;
10、三角函數(shù)求周期、單調(diào)區(qū)間或是最值,優(yōu)先考慮化為一次同角弦函數(shù),然后使用輔助角公式解答;解三角形的題目,重視內(nèi)角和定理的使用;與向量聯(lián)系的題目,注意向量角的范圍;
11、數(shù)列的題目與和有關(guān),優(yōu)選和通公式,優(yōu)選作差的方法;注意歸納、猜想之后證明;猜想的方向是兩種特殊數(shù)列;解答的時(shí)候注意使用通項(xiàng)公式及前n項(xiàng)和公式,體會(huì)方程的思想;
12、立體幾何第一問如果是為建系服務(wù)的,一定用傳統(tǒng)做法完成,如果不是,可以從第一問開始就建系完成;注意向量角與線線角、線面角、面面角都不相同,熟練掌握它們之間的三角函數(shù)值的轉(zhuǎn)化;錐體體積的計(jì)算注意系數(shù)1/3,而三角形面積的計(jì)算注意系數(shù)1/2;與球有關(guān)的題目也不得不防,注意連接“心心距”創(chuàng)造直角三角形解題;
13、導(dǎo)數(shù)的題目常規(guī)的一般不難,但要注意解題的層次與步驟,如果要用構(gòu)造函數(shù)證明不等式,可從已知或是前問中找到突破口,必要時(shí)應(yīng)該放棄;重視幾何意義的應(yīng)用,注意點(diǎn)是否在曲線上;
14、概率的題目如果出解答題,應(yīng)該先設(shè)事件,然后寫出使用公式的理由,當(dāng)然要注意步驟的多少?zèng)Q定解答的詳略;如果有分布列,則概率和為1是檢驗(yàn)正確與否的重要途徑;
15、遇到復(fù)雜的式子可以用換元法,使用換元法必須注意新元的取值范圍,有勾股定理型的已知,可使用三角換元來完成;
16、注意概率分布中的二項(xiàng)分布,二項(xiàng)式定理中的通項(xiàng)公式的使用與賦值的方法,排列組合中的枚舉法,全稱與特稱命題的否定寫法,取值范或是不等式的解的端點(diǎn)能否取到需單獨(dú)驗(yàn)證,用點(diǎn)斜式或斜截式方程的時(shí)候考慮斜率是否存在等;
17、絕對值問題優(yōu)先選擇去絕對值,去絕對值優(yōu)先選擇使用定義;
18、與平移有關(guān)的,注意口訣“左加右減,上加下減”只用于函數(shù),沿向量平移一定要使用平移公式完成;
19、關(guān)于中心對稱問題,只需使用中點(diǎn)坐標(biāo)公式就可以,關(guān)于軸對稱問題,注意兩個(gè)等式的運(yùn)用:一是垂直,一是中點(diǎn)在對稱軸上。
高中數(shù)學(xué)解題小技巧
1、圓錐曲線中最后題往往聯(lián)立起來很復(fù)雜導(dǎo)致k算不出,這時(shí)你可以取特殊值法強(qiáng)行算出k過程就是先聯(lián)立,后算代爾塔,用下偉達(dá)定理,列出題目要求解的表達(dá)式,就ok了。
2、選擇題中如果有算錐體體積和表面積的話,直接看選項(xiàng)面積找到差2倍的小的就是答案,體積找到差3倍的小的就是答案,屢試不爽!
3、三角函數(shù)第二題,如求a(cosB+cosC)/(b+c)coA之類的先邊化角然后把第一題算的比如角A等于60度直接假設(shè)B和C都等于60°帶入求解。省時(shí)省力!
4、空間幾何證明過程中有一步實(shí)在想不出把沒用過的條件直接寫上然后得出想不出的那個(gè)結(jié)論即可。如果第一題真心不會(huì)做直接寫結(jié)論成立則第二題可以直接用!用常規(guī)法的同學(xué)建議先隨便建立個(gè)空間坐標(biāo)系,做錯(cuò)了還有2分可以得!
5、立體幾何中第二問叫你求余弦值啥的一般都用坐標(biāo)法!如果求角度則常規(guī)法簡單!
6、選擇題中考線面關(guān)系的可以先從D項(xiàng)看起前面都是來浪費(fèi)你時(shí)間的
7、選擇題中求取值范圍的直接觀察答案從每個(gè)選項(xiàng)中取與其他選項(xiàng)不同的特殊點(diǎn)帶入能成立的就是答案
8、線性規(guī)劃題目直接求交點(diǎn)帶入比較大小即可
9、遇到這樣的選項(xiàng)A、1/2,B、1,C、3/2,D、5/2這樣的話答案一般是D因?yàn)锽可以看作是2/2前面三個(gè)都是出題者湊出來的如果答案在前面3個(gè)的話D應(yīng)該是2(4/2)
高中數(shù)學(xué)萬能解題技巧
、偬刂禉z驗(yàn)法、對于具有一般性的數(shù)學(xué)問題,我們在解題過程中,可以將問題特殊化,利用問題在某一特殊情況下不真,則它在一般情況下不真這一原理,達(dá)到去偽存真的目的。
、跇O端性原則、將所要研究的問題向極端狀態(tài)進(jìn)行分析,使因果關(guān)系變得更加明顯,從而達(dá)到迅速解決問題的目的。極端性多數(shù)應(yīng)用在求極值、取值范圍、解析幾何上面,很多計(jì)算步驟繁瑣、計(jì)算量大的題,一但采用極端性去分析,那么就能瞬間解決問題。
、厶蕹、利用已知條件和選擇支所提供的信息,從四個(gè)選項(xiàng)中剔除掉三個(gè)錯(cuò)誤的答案,從而達(dá)到正確選擇的目的。這是一種常用的方法,尤其是答案為定值,或者有數(shù)值范圍時(shí),取特殊點(diǎn)代入驗(yàn)證即可排除。
、軘(shù)形結(jié)合法、由題目條件,作出符合題意的圖形或圖象,借助圖形或圖象的直觀性,經(jīng)過簡單的推理或計(jì)算,從而得出答案的方法。數(shù)形結(jié)合的好處就是直觀,甚至可以用量角尺直接量出結(jié)果來。
、葸f推歸納法、通過題目條件進(jìn)行推理,尋找規(guī)律,從而歸納出正確答案的方法。
、揄樛品ā⒗脭(shù)學(xué)定理、公式、法則、定義和題意,通過直接演算推理得出結(jié)果的方法。
、吣嫱乞(yàn)證法(代答案入題干驗(yàn)證法)、將選擇支代入題干進(jìn)行驗(yàn)證,從而否定錯(cuò)誤選擇支而得出正確選擇支的方法。
、嗾y則反法、從題的正面解決比較難時(shí),可從選擇支出發(fā)逐步逆推找出符合條件的結(jié)論,或從反面出發(fā)得出結(jié)論。
⑨特征分析法、對題設(shè)和選擇支的特點(diǎn)進(jìn)行分析,發(fā)現(xiàn)規(guī)律,歸納得出正確判斷的方法。
、夤乐颠x擇法、有些問題,由于題目條件限制,無法(或沒有必要)進(jìn)行精準(zhǔn)的運(yùn)算和判斷,此時(shí)只能借助估算,通過觀察、分析、比較、推算,從面得出正確判斷的方法。
高中數(shù)學(xué)解題技巧總結(jié)
1、調(diào)理大腦思緒,提前進(jìn)入數(shù)學(xué)情境
考前要摒棄雜念,排除干擾思緒,使大腦處于“空白”狀態(tài),創(chuàng)設(shè)數(shù)學(xué)情境,進(jìn)而醞釀數(shù)學(xué)思維,提前進(jìn)入“角色”,通過清點(diǎn)用具、暗示重要知識和方法、提醒常見解題誤區(qū)和自己易出現(xiàn)的錯(cuò)誤等,進(jìn)行針對性的自我安慰,從而減輕壓力,輕裝上陣,穩(wěn)定情緒、增強(qiáng)信心,使思維單一化、數(shù)學(xué)化、以平穩(wěn)自信、積極主動(dòng)的心態(tài)準(zhǔn)備應(yīng)考。
2、沉著應(yīng)戰(zhàn),確保旗開得勝,以利振奮精神
良好的開端是成功的一半,從考試的心理角度來說,這確實(shí)是很有道理的,拿到試題后,不要急于求成、立即下手解題,而應(yīng)通覽一遍整套試題,摸透題情,然后穩(wěn)操一兩個(gè)易題熟題,讓自己產(chǎn)生“旗開得勝”的快意,從而有一個(gè)良好的開端,以振奮精神,鼓舞信心,很快進(jìn)入最佳思維狀態(tài),即發(fā)揮心理學(xué)所謂的“門坎效應(yīng)”,之后做一題得一題,不斷產(chǎn)生正激勵(lì),穩(wěn)拿中低,見機(jī)攀高。
3、“內(nèi)緊外松”,集中注意,消除焦慮怯場
集中注意力是考試成功的保證,一定的神經(jīng)亢奮和緊張,能加速神經(jīng)聯(lián)系,有益于積極思維,要使注意力高度集中,思維異常積極,這叫內(nèi)緊,但緊張程度過重,則會(huì)走向反面,形成怯場,產(chǎn)生焦慮,抑制思維,所以又要清醒愉快,放得開,這叫外松。
4、一“慢”一“快”,相得益彰
有些考生只知道考場上一味地要快,結(jié)果題意未清,條件未全,便急于解答,豈不知欲速則不達(dá),結(jié)果是思維受阻或進(jìn)入死胡同,導(dǎo)致失敗。應(yīng)該說,審題要慢,解答要快。審題是整個(gè)解題過程的“基礎(chǔ)工程”,題目本身是“怎樣解題”的信息源,必須充分搞清題意,綜合所有條件,提煉全部線索,形成整體認(rèn)識,為形成解題思路提供全面可靠的依據(jù)。而思路一旦形成,則可盡量快速完成。
5、“六先六后”,因人因卷制宜
在通覽全卷,將簡單題順手完成的情況下,情緒趨于穩(wěn)定,情境趨于單一,大腦趨于亢奮,思維趨于積極,之后便是發(fā)揮臨場解題能力的黃金季節(jié)了,這時(shí),考生可依自己的解題習(xí)慣和基本功,結(jié)合整套試題結(jié)構(gòu),選擇執(zhí)行“六先六后”的戰(zhàn)術(shù)原則。
1、先易后難
。就是先做簡單題,再做綜合題,應(yīng)根據(jù)自己的實(shí)際,果斷跳過啃不動(dòng)的題目,從易到難,也要注意認(rèn)真對待每一道題,力求有效,不能走馬觀花,有難就退,傷害解題情緒。
2、先熟后生。
通覽全卷,可以得到許多有利的積極因素,也會(huì)看到一些不利之處,對后者,不要驚慌失措,應(yīng)想到試題偏難對所有考生也難,通過這種暗示,確保情緒穩(wěn)定,對全卷整體把握之后,就可實(shí)施先熟后生的方法,即先做那些內(nèi)容掌握比較到家、題型結(jié)構(gòu)比較熟悉、解題思路比較清晰的題目。這樣,在拿下熟題的同時(shí),可以使思維流暢、超常發(fā)揮,達(dá)到拿下中高檔題目的目的。
3、先同后異。
先做同科同類型的題目,思考比較集中,知識和方法的溝通比較容易,有利于提高單位時(shí)間的效益。高考題一般要求較快地進(jìn)行“興奮灶”的轉(zhuǎn)移,而“先同后異”,可以避免“興奮灶”過急、過頻的跳躍,從而減輕大腦負(fù)擔(dān),保持有效精力,4、先小后大。
小題一般是信息量少、運(yùn)算量小,易于把握,不要輕易放過,應(yīng)爭取在大題之前盡快解決,從而為解決大題贏得時(shí)間,創(chuàng)造一個(gè)寬松的心理基礎(chǔ)
5、先點(diǎn)后面。
近年的高考數(shù)學(xué)解答題多呈現(xiàn)為多問漸難式的“梯度題”,解答時(shí)不必一氣審到底,應(yīng)走一步解決一步,而前面問題的解決又為后面問題準(zhǔn)備了思維基礎(chǔ)和解題條件,所以要步步為營,由點(diǎn)到面6、先高后低。即在考試的后半段時(shí)間,要注重時(shí)間效益,如估計(jì)兩題都會(huì)做,則先做高分題;估計(jì)兩題都不易,則先就高分題實(shí)施“分段得分”,以增加在時(shí)間不足前提下的得分。
6、確保運(yùn)算準(zhǔn)確,立足一次成功
數(shù)學(xué)高考題的容量在120分鐘時(shí)間內(nèi)完成大小26個(gè)題,時(shí)間很緊張,不允許做大量細(xì)致的解后檢驗(yàn),所以要盡量準(zhǔn)確運(yùn)算(關(guān)鍵步驟,力求準(zhǔn)確,寧慢勿快),立足一次成功。解題速度是建立在解題準(zhǔn)確度基礎(chǔ)上,更何況數(shù)學(xué)題的中間數(shù)據(jù)常常不但從“數(shù)量”上,而且從“性質(zhì)”上影響著后繼各步的解答。所以,在以快為上的前提下,要穩(wěn)扎穩(wěn)打,層層有據(jù),步步準(zhǔn)確,不能為追求速度而丟掉準(zhǔn)確度,甚至丟掉重要的得分步驟,假如速度與準(zhǔn)確不可兼得的說,就只好舍快求對了,因?yàn)榻獯鸩粚,再快也無意義。
7、講求規(guī)范書寫,力爭既對又全
考試的又一個(gè)特點(diǎn)是以卷面為唯一依據(jù)。這就要求不但會(huì)而且要對、對且全,全而規(guī)范。會(huì)而不對,令人惋惜;對而不全,得分不高;表述不規(guī)范、字跡不工整又是造成高考數(shù)學(xué)試卷非智力因素失分的一大方面。因?yàn)樽舟E潦草,會(huì)使閱卷老師的第一印象不良,進(jìn)而使閱卷老師認(rèn)為考生學(xué)習(xí)不認(rèn)真、基本功不過硬、“感情分”也就相應(yīng)低了,此所謂心理學(xué)上的“光環(huán)效應(yīng)”!皶鴮懸ふ,卷面能得分”講的也正是這個(gè)道理。
8、面對難題,講究方法,爭取得分
會(huì)做的題目當(dāng)然要力求做對、做全、得滿分,而更多的問題是對不能全面完成的題目如何分段得分。下面有兩種常用方法。
1、缺步解答。
對一個(gè)疑難問題,確實(shí)啃不動(dòng)時(shí),一個(gè)明智的解題方法是、將它劃分為一個(gè)個(gè)子問題或一系列的步驟,先解決問題的一部分,即能解決到什么程度就解決到什么程度,能演算幾步就寫幾步,每進(jìn)行一步就可得到這一步的分?jǐn)?shù)。如從最初的把文字語言譯成符號語言,把條件和目標(biāo)譯成數(shù)學(xué)表達(dá)式,設(shè)應(yīng)用題的未知數(shù),設(shè)軌跡題的動(dòng)點(diǎn)坐標(biāo),依題意正確畫出圖形等,都能得分。還有象完成數(shù)學(xué)歸納法的第一步,分類討論,反證法的簡單情形等,都能得分。而且可望在上述處理中,從感性到理性,從特殊到一般,從局部到整體,產(chǎn)生頓悟,形成思路,獲得解題成功。
2、跳步解答。
解題過程卡在一中間環(huán)節(jié)上時(shí),可以承認(rèn)中間結(jié)論,往下推,看能否得到正確結(jié)論,如得不出,說明此途徑不對,立即否得到正確結(jié)論,如得不出,說明此途徑不對,立即改變方向,尋找它途;如能得到預(yù)期結(jié)論,就再回頭集中力量攻克這一過渡環(huán)節(jié)。若因時(shí)間限制,中間結(jié)論來不及得到證實(shí),就只好跳過這一步,寫出后繼各步,一直做到底;另外,若題目有兩問,第一問做不上,可以第一問為“已知”,完成第二問,這都叫跳步解答。也許后來由于解題的正遷移對中間步驟想起來了,或在時(shí)間允許的情況下,經(jīng)努力而攻下了中間難點(diǎn),可在相應(yīng)題尾補(bǔ)上。
9、以退求進(jìn),立足特殊
發(fā)散一般對于一個(gè)較一般的問題,若一時(shí)不能取得一般思路,可以采取化一般為特殊(如用特殊法解選擇題),化抽象為具體,化整體為局部,化參量為常量,化較弱條件為較強(qiáng)條件,等等?傊,退到一個(gè)你能夠解決的程度上,通過對“特殊”的思考與解決,啟發(fā)思維,達(dá)到對“一般”的解決。
10、應(yīng)用性問題思路、面—點(diǎn)—線
解決應(yīng)用性問題,首先要全面調(diào)查題意,迅速接受概念,此為“面”;透過冗長敘述,抓住重點(diǎn)詞句,提出重點(diǎn)數(shù)據(jù),此為“點(diǎn)”;綜合聯(lián)系,提煉關(guān)系,依靠數(shù)學(xué)方法,建立數(shù)學(xué)模型,此為“線”,如此將應(yīng)用性問題轉(zhuǎn)化為純數(shù)學(xué)問題。當(dāng)然,求解過程和結(jié)果都不能離開實(shí)際背景。
11、執(zhí)果索因,逆向思考,正難則反
對一個(gè)問題正面思考發(fā)生思維受阻時(shí),用逆向思維的方法去探求新的解題途徑,往往能得到突破性的進(jìn)展,如果順向推有困難就逆推,直接證有困難就反證,如用分析法,從肯定結(jié)論或中間步驟入手,找充分條件;用反證法,從否定結(jié)論入手找必要條件。
12、回避結(jié)論的肯定與否定,解決探索性問題
對探索性問題,不必追求結(jié)論的“是”與“否”、“有”與“無”,可以一開始,就綜合所有條件,進(jìn)行嚴(yán)格的推理與討論,則步驟所至,結(jié)論自明。
【高中數(shù)學(xué)解題技巧】相關(guān)文章:
數(shù)學(xué)橢圓的解題技巧10-29
語文病句解題技巧01-07
中考科學(xué)的解題技巧04-25
中考數(shù)學(xué)的實(shí)用解題技巧04-26
英語閱讀表達(dá)解題技巧08-15
英語高考閱讀解題技巧06-15
歷史材料解析題的解題技巧06-01
高考字形題解題技巧及資料09-16