- 相關(guān)推薦
考研數(shù)學(xué)證明題類別及證法盤點
我們在進行考研數(shù)學(xué)的備考時,需要把證明題類別和證法考點了解清楚。小編為大家精心準備了考研數(shù)學(xué)證明題分類和證法指南,歡迎大家前來閱讀。
考研數(shù)學(xué)證明題分類和證法解析
☆題目篇☆
考試難題一般出現(xiàn)在高等數(shù)學(xué),對高等數(shù)學(xué)一定要抓住重難點進行復(fù)習(xí)。高等數(shù)學(xué)題目中比較困難的是證明題,在整個高等數(shù)學(xué),容易出證明題的地方如下:
▶數(shù)列極限的證明
數(shù)列極限的證明是數(shù)一、二的重點,特別是數(shù)二最近幾年考的非常頻繁,已經(jīng)考過好幾次大的證明題,一般大題中涉及到數(shù)列極限的證明,用到的方法是單調(diào)有界準則。
▶微分中值定理的相關(guān)證明
微分中值定理的證明題歷來是考研的重難點,其考試特點是綜合性強,涉及到知識面廣,涉及到中值的等式主要是三類定理:
1.零點定理和介質(zhì)定理;
2.微分中值定理;
包括羅爾定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用來處理高階導(dǎo)數(shù)的相關(guān)問題,考查頻率底,所以以前兩個定理為主。
3.微分中值定理
積分中值定理的作用是為了去掉積分符號。
在考查的時候,一般會把三類定理兩兩結(jié)合起來進行考查,所以要總結(jié)到現(xiàn)在為止,所考查的題型。
▶方程根的問題
包括方程根唯一和方程根的個數(shù)的討論。
▶不等式的證明
▶定積分等式和不等式的證明
主要涉及的方法有微分學(xué)的方法:常數(shù)變異法;積分學(xué)的方法:換元法和分布積分法。
▶積分與路徑無關(guān)的五個等價條件
這一部分是數(shù)一的.考試重點,最近幾年沒設(shè)計到,所以要重點關(guān)注。
☆方法篇☆
以上是容易出證明題的地方,同學(xué)們在復(fù)習(xí)的時候重點歸納這類題目的解法。那么,遇到這類的證明題,我們應(yīng)該用什么方法解題呢?
▶結(jié)合幾何意義記住基本原理
重要的定理主要包括零點存在定理、中值定理、泰勒公式、極限存在的兩個準則等基本原理,包括條件及結(jié)論。
知道基本原理是證明的基礎(chǔ),知道的程度(即就是對定理理解的深入程度)不同會導(dǎo)致不同的推理能力。如2006年數(shù)學(xué)一真題第16題(1)是證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。
因為數(shù)學(xué)推理是環(huán)環(huán)相扣的,如果第一步未得到結(jié)論,那么第二步就是空中樓閣。這個題目非常簡單,只用了極限存在的兩個準則之一:單調(diào)有界數(shù)列必有極限。只要知道這個準則,該問題就能輕松解決,因為對于該題中的數(shù)列來說,“單調(diào)性”與“有界性”都是很好驗證的。像這樣直接可以利用基本原理的證明題并不是很多,更多的是要用到第二步。
▶借助幾何意義尋求證明思路
一個證明題,大多時候是能用其幾何意義來正確解釋的,當(dāng)然最為基礎(chǔ)的是要正確理解題目文字的含義。如2007年數(shù)學(xué)一第19題是一個關(guān)于中值定理的證明題,可以在直角坐標系中畫出滿足題設(shè)條件的函數(shù)草圖,再聯(lián)系結(jié)論能夠發(fā)現(xiàn):兩個函數(shù)除兩個端點外還有一個函數(shù)值相等的點,那就是兩個函數(shù)分別取最大值的點(正確審題:兩個函數(shù)取得最大值的點不一定是同一個點)之間的一個點。這樣很容易想到輔助函數(shù)F(x)=f(x)-g(x)有三個零點,兩次應(yīng)用羅爾中值定理就能得到所證結(jié)論。
再如2005年數(shù)學(xué)一第18題(1)是關(guān)于零點存在定理的證明題,只要在直角坐標系中結(jié)合所給條件作出函數(shù)y=f(x)及y=1-x在[0,1]上的圖形就立刻能看到兩個函數(shù)圖形有交點,這就是所證結(jié)論,重要的是寫出推理過程。從圖形也應(yīng)該看到兩函數(shù)在兩個端點處大小關(guān)系恰好相反,也就是差函數(shù)在兩個端點的值是異號的,零點存在定理保證了區(qū)間內(nèi)有零點,這就證得所需結(jié)果。如果第二步實在無法完滿解決問題的話,轉(zhuǎn)第三步。
▶逆推法
從結(jié)論出發(fā)尋求證明方法。如2004年第15題是不等式證明題,該題只要應(yīng)用不等式證明的一般步驟就能解決問題:即從結(jié)論出發(fā)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性推出結(jié)論。
在判定函數(shù)的單調(diào)性時需借助導(dǎo)數(shù)符號與單調(diào)性之間的關(guān)系,正常情況只需一階導(dǎo)的符號就可判斷函數(shù)的單調(diào)性,非正常情況卻出現(xiàn)的更多(這里所舉出的例子就屬非正常情況),這時需先用二階導(dǎo)數(shù)的符號判定一階導(dǎo)數(shù)的單調(diào)性,再用一階導(dǎo)的符號判定原來函數(shù)的單調(diào)性,從而得所要證的結(jié)果。該題中可設(shè)F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要證的不等式。
對于那些經(jīng)常使用如上方法的考生來說,利用三步走就能輕松收獲數(shù)學(xué)證明的12分,但對于從心理上就不自信能解決證明題的考生來說,卻常常輕易丟失12分,后一部分同學(xué)請按“證明三步走”來建立自信心,以阻止考試分數(shù)的白白流失。
考研數(shù)學(xué)沖刺高數(shù)必會六種題型
第一:求極限
無論數(shù)學(xué)一、數(shù)學(xué)二還是數(shù)學(xué)三,求極限是高等數(shù)學(xué)的基本要求,所以也是每年必考的內(nèi)容。區(qū)別在于有時以4分小題形式出現(xiàn),題目簡單;有時以大題出現(xiàn),需要使用的方法綜合性強。比如大題可能需要用到等價無窮小代換、泰勒展開式、洛必達法則、分離因子、重要極限等中的幾種方法,有時考生需要選擇其中簡單易行的組合完成題目。另外,分段函數(shù)有的點的導(dǎo)數(shù),函數(shù)圖形的漸近線,以極限形式定義的函數(shù)的連續(xù)性、可導(dǎo)性的研究等也需要使用極限手段達到目的,須引起注意!
第二:利用中值定理證明等式或不等式,利用函數(shù)單調(diào)性證明不等式
證明題不能說每年一定考,但基本上十年有九年都會涉及。等式的證明包括使用4個微分中值定理,1個積分中值定理;不等式的證明有時既可使用中值定理,也可使用函數(shù)單調(diào)性。這里泰勒中值定理的`使用是一個難點,但考查的概率不大。
第三:一元函數(shù)求導(dǎo)數(shù),多元函數(shù)求偏導(dǎo)數(shù)
求導(dǎo)問題主要考查基本公式及運算能力,當(dāng)然也包括對函數(shù)關(guān)系的處理能力。一元函數(shù)求導(dǎo)可能會以參數(shù)方程求導(dǎo)、變現(xiàn)積分求導(dǎo)或應(yīng)用問題中涉及求導(dǎo),甚或高階導(dǎo)數(shù);多元函數(shù)(主要為二元函數(shù))的偏導(dǎo)數(shù)基本上每年都會考查,給出的函數(shù)可能是較為復(fù)雜的顯函數(shù),也可能是隱函數(shù)(包括方程組確定的隱函數(shù))。
另外,二元函數(shù)的極值與條件極值與實際問題聯(lián)系極其緊密,是一個考查重點。極值的充分條件、必要條件均涉及二元函數(shù)的偏導(dǎo)數(shù)。
第四:級數(shù)問題
常數(shù)項級數(shù)(特別是正項級數(shù)、交錯級數(shù))的判別,條件收斂與絕對收斂的本質(zhì)含義均是考查的重點,但常常以小題形式出現(xiàn)。函數(shù)項級數(shù)(冪級數(shù),對數(shù)一來說還有傅里葉級數(shù),但考查的頻率不高)的收斂半徑、收斂區(qū)間、收斂域、和函數(shù)等及函數(shù)在一點的冪級數(shù)展開在考試中常占有較高的分值。
第五:積分的計算
積分的計算包括不定積分、定積分、反常積分的計算,以及二重積分的計算,對考生來說數(shù)學(xué)主要是三重積分、曲線積分、曲面積分的計算。這是以考查運算能力與處理問題的技巧能力為主,以對公式的熟悉及空間想象能力的考查為輔的。需要注意在復(fù)習(xí)中對一些問題的靈活處理,例如定積分幾何意義的使用,重心、形心公式的反用,對稱性的使用等。
第六:微分方程問題
解常微分方程方法固定,無論是一階線性方程、可分離變量方程、齊次方程還是高階常系數(shù)齊次與非齊次方程,只要記住常用形式,注意運算準確性,在考場上正確運算都沒有問題。但這里需要注意:研究生考試對微分方程的考查常有一種反向方式,即平常給出方程求通解或特解,現(xiàn)在給出通解或特解求方程。這需要考生對方程與其通解、特解之間的關(guān)系熟練掌握。
考研數(shù)學(xué)掌握五種做題原則
1.思考著去做題,去總結(jié)
很多學(xué)生都有這樣的困惑,做了很多題但不會的題還是很多,最可氣的就是很多題明明做過,但是再遇到還是不會做!這就是很多同學(xué)存在的通病,不求甚解。總以為不會做了,看看答案就會了,并不會認真的思考為什么不會,解題技巧是什么,和它同類型的題我能不能會做等等。其實,這些都是很重要的,提醒大家要學(xué)著思考,學(xué)著“記憶”,最重要是要會舉一反三,這樣,我們才能脫離題海的浮沉,能夠做到有效做題,高效提升!
2.側(cè)重基礎(chǔ),培養(yǎng)逆向思維
很多時候,備考者會陷入盲目的題海中,這也是很多考生對數(shù)學(xué)感到頭痛的`原因所在。其實在前期復(fù)習(xí)知識點的時候,就應(yīng)該把定義、定理的推導(dǎo)作為一個重點內(nèi)容,重視推導(dǎo)和例題中的方法與技巧,認真分析這些方法,將它們套用到相應(yīng)的練習(xí)題中,比做大量的重復(fù)練習(xí)要高效得多。
同時,思維習(xí)慣大大影響著學(xué)習(xí)效果。當(dāng)進入考研數(shù)學(xué)復(fù)習(xí)備考的時候,大多數(shù)人繼承了以往學(xué)習(xí)的習(xí)慣,思維也基本上定型了,也就是進入了定勢思維。習(xí)慣性思考方式在一方面有優(yōu)勢,另一方面也制約著學(xué)習(xí)成績的提高,我們現(xiàn)在要做的就是打破慣性思維!
3.做題有始有終,提高計算能力
數(shù)學(xué)不等于做題,但是不可避免的是學(xué)好數(shù)學(xué)一定要做題,那么如何做題?我們說基礎(chǔ)的扎實鞏固是根本,再這個基礎(chǔ)上進行做題。同時,提醒大家的是復(fù)習(xí)一定要養(yǎng)成一個好的習(xí)慣,拿到的數(shù)學(xué)題一定要有始有終把它算出來,這是一種計算能力的訓(xùn)練,尤其是計算量大的時候,如果沒有平常這樣一個訓(xùn)練,在實際考試的時候在短時間內(nèi)是很難心有余力也足的。
4.深入思考,善于總結(jié)
考試里不僅僅是考察我們基本概念、基本理論、基本方法的問題,還涉及到我們靈活運用知識的能力問題,所以僅僅是依靠教材很難把它這種考試命題的特點歸納總結(jié)出來,因此要了解考試,歷年考試的真題作為準備去參加研究生考試的同學(xué)是必備的。
大家選真題的時候應(yīng)該考慮到能不能通過真題的分析幫助我們真正的歸納總結(jié)這樣一些題型出來,針對每一個問題我們應(yīng)該如何去分析和討論在分析討論過程中間,有沒有一些可能的變化情況,這些變化情況到現(xiàn)在為止,考到了哪一些,那一些就是我們下一步復(fù)習(xí)應(yīng)該注意的,這樣每一部分你都能夠這樣去歸納、總結(jié)或通過這種相關(guān)的輔導(dǎo)書幫助你歸納總結(jié)出來了,復(fù)習(xí)就更有針對性。
5.揣摩真題,把握方向
真題的作用是不容忽視的,經(jīng)過十幾年的考試,相當(dāng)多的題目模式已經(jīng)定了下來,很多考研題目都是類似的?佳姓骖}經(jīng)過千錘百煉,在思想性上有較高的參考價值,需要多加揣摩。尤其是近兩年的考題,反映了命題者出題的方式和思路,更要注意。所以,同學(xué)們一定要把真題重視起來!
【考研數(shù)學(xué)證明題類別及證法盤點】相關(guān)文章:
盤點適合文科生報考的考研專業(yè)08-24
高中數(shù)學(xué)歸納法證明題08-03
盤點文科生如何正確選擇考研專業(yè)11-20
盤點考研十大熱門專業(yè)與薪資狀況11-20
考研數(shù)學(xué)心得12-28