考研數(shù)學必考的知識點有哪些
我們在準備考研數(shù)學的復習時,要掌握好必考的知識點有哪些,才能更好的提高分數(shù)。小編為大家精心準備了考研數(shù)學必考知識點指南攻略,歡迎大家前來閱讀。
考研數(shù)學必考知識點匯總
1、兩個重要極限,未定式的極限、等價無窮小代換
這些小的知識點在歷年的考察中都比較高。而透過我們分析,假如考極限的話,主要考的是洛必達法則加等價無窮小代換,特別針對數(shù)三的同學,這兒可能出大題。
2、處理連續(xù)性,可導性和可微性的關系
要求掌握各種函數(shù)的求導方法。比如隱函數(shù)求導,參數(shù)方程求導等等這一類的,還有注意一元函數(shù)的應用問題,這也是歷年考試的一個重點。數(shù)三的同學這兒結合經(jīng)濟類的一些試題進行考察。
3、微分方程:一是一元線性微分方程,第二是二階常系數(shù)齊次/非齊次線性微分方程
對第一部分,考生需要掌握九種小類型,針對每一種小類型有不同的解題方式,針對每個不同的方程,套用不同的公式就行了。對于二階常系數(shù)線性微分方程大家一定要理解解的結構。另一塊對于非齊次的方程來說,考生要注意它和特征方程的聯(lián)系,有齊次為方程可以求它的通解,當然給出的通解大家也要寫出它的特征方程,這個變化是咱們這幾年的一個趨勢。這一類問題就是逆問題。
對于二階常系數(shù)非齊次的線性方程大家要分類掌握。當然,這一塊對于數(shù)三的`同學來說,還有一個差分方程的問題,差分方程不作為咱們的一個重點,而且提醒大家一下,學習的時候要注意,差分方程的解題方式和微方程是相似的,學習的時候要注意這一點。
4、級數(shù)問題,主要針對數(shù)一和數(shù)三
這部分的重點是:一、常數(shù)項級數(shù)的性質(zhì),包括斂散性;二、牽扯到冪級數(shù),大家要熟練掌握冪級數(shù)的收斂區(qū)間的計算,收斂半徑與和函數(shù),冪級數(shù)展開的問題,要掌握一個熟練的方法來進行計算。對于冪級數(shù)求和函數(shù)它可能直接給咱們一個冪級數(shù)求它的和函數(shù)或者給出一個常數(shù)項級數(shù)讓咱們求它的和,要轉化成適當?shù)膬缂墧?shù)來進行求和。
5、一維隨機變量函數(shù)的分布
這個要重點掌握連續(xù)性變量的這一塊。這里面有個難點,一維隨機變量函數(shù)這是一個難點,求一元隨機變量函數(shù)的分布有兩種方式,一個是分布函數(shù)法,這是最基本要掌握的。另外是公式法,公式法相對比較便捷,但是應用范圍有一定的局限性。
6、隨機變量的數(shù)字特征
要記住一維隨機變量的數(shù)字特征都要記熟,數(shù)字特征很少單獨性考察,往往和前面的一維隨機變量函數(shù)和多維隨機變量函數(shù)和第六章的數(shù)理統(tǒng)計結合進行考察。特別針對數(shù)一的同學來說,考察矩估計和最大似然估計的時候會考察無偏性。
7、參數(shù)估計
這一點是咱們經(jīng)常出大題的地方,這一塊對咱們數(shù)一,數(shù)二,數(shù)三的考生來講,包含兩塊知識點,一個是矩估計,一個是最大似然估計,這兩個集中出大題。
考研數(shù)學答題技巧
證明題復習攻略:
第一,對題目所給條件敏感。在熟悉基本定理、公式和結論的基礎上,從題目條件出發(fā)初步確定證明的出發(fā)點和思路;
第二,善于發(fā)掘結論與題目條件之間的關系。例如利用微分中值定理證明等式或不等式,從結論式出發(fā)即可確定構造的輔助函數(shù),從而解決證明的關鍵問題。
計算題復習攻略:
近年計算題考查重點不在于計算量和運算復雜度,而側重于思路和方法,例如重積分、曲線曲面積分的計算、求級數(shù)的和函數(shù)等,除了保證運算的準確率,更重要的就是系統(tǒng)總結各類計算題的解題思路和技巧,以求遇到題目能選擇最簡便有效的解題思路,快速得出正確結果,F(xiàn)在距離考試還有一個多月,考前沖刺做題貴在“精”,選擇命題合乎大綱要求、難度適宜的模擬題進行練習是效果最為立竿見影的。
應用題復習攻略:
重點考查分析、解決問題的能力。首先,從題目條件出發(fā),明確題目要解決的目標;第二,確立題目所給條件與需要解決的目標之間的關系,將這種關系整合到數(shù)學模型中(對于圖形問題要特別注意原點及坐標系的選取),這也是解題最為重要的環(huán)節(jié);第三,根據(jù)第二步建立的數(shù)學模型的類別,尋找相應的解題方法,則問題可迎刃而解。
考研數(shù)學備考高等數(shù)學重點難點解析
一、函數(shù)、極限、連續(xù)部分:極限的運算法則、極限存在的準則(單調(diào)有界準則和夾逼準則)、未定式的極限、主要的等價無窮小、函數(shù)間斷點的判斷以及分類,還有閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(尤其是介值定理),這些知識點在歷年真題中出現(xiàn)的概率比較高,屬于重點內(nèi)容,但是很基礎,不是難點,因此這部分內(nèi)容一定不要丟分。
二、微分學部分:主要是一元函數(shù)微分學和多元函數(shù)微分學,其中一元函數(shù)微分學是基礎亦是重點。
一元函數(shù)微分學,主要掌握連續(xù)性、可導性、可微性三者的關系,另外要掌握各種函數(shù)求導的方法,尤其是復合函數(shù)、隱函數(shù)求導。微分中值定理也是重點掌握的內(nèi)容,這一部分可以出各種各樣構造輔助函數(shù)的證明,包括等式和不等式的證明,這種類型題目的技巧性比較強,應多加練習。函數(shù)的凹凸性、拐點及漸近線,也是一個重點內(nèi)容,在近幾年考研中常出現(xiàn)。曲率部分,僅數(shù)一考生需要掌握,但是并不是重點,在考試中很少出現(xiàn),記住相關公式即可。
多元函數(shù)微分學,掌握連續(xù)性、偏導性、可微性三者之間的關系,重點掌握各種函數(shù)求偏導的方法。多元函數(shù)的應用也是重點,主要是條件極值和最值問題。方向?qū)?shù)、梯度,空間曲線、曲面的切平面和法線,僅數(shù)一考生需要掌握,但是不是重點,記憶相關公式即可。
三、積分學部分:
一元函數(shù)積分學的一個重點是不定積分與定積分的計算。這個對于有些同學來說可能不難,但是要想用簡便的方法解答還是需要多花點時間學習的。在計算過程中,會用到不定積分/定積分的基本性質(zhì)、換元積分法、分部積分法。其中,換元積分法是重點,會涉及到三角函數(shù)換元、倒代換,這種方法相信多數(shù)同學都會,但是如何準確地進行換元從而得到最終答案,卻是需要下一番工夫的。定積分的應用同樣是重點,常考的是面積、體積的求解,同學們應牢記相關公式,通過多練掌握解題技巧。對于定積分在物理上的應用(數(shù)一數(shù)二有要求),如功、引力、壓力、質(zhì)心、形心等,近幾年考試基本都沒有涉及,考生只要記住求解公式即可。
多元函數(shù)積分學的一個重點是二重積分的計算,其中要用到二重積分的性質(zhì),以及直角坐標與極坐標的相互轉化。這部分內(nèi)容,每年都會考到,考生要引起重視,需要明白的是,二重積分并不是難點。三重積分、曲線和曲面積分屬于數(shù)一單獨考查的內(nèi)容,主要是掌握三重積分的計算、格林公式和高斯公式以及曲線積分與路徑無關的條件。對于數(shù)一考生來說,這部分是重點,也是難點所在。散度、旋度同樣是數(shù)一考生單獨考查內(nèi)容,但是不是重點,會進行簡單計算即可。
四、向量代數(shù)與空間解析幾何部分:
這部分內(nèi)容只對考數(shù)一的同學要求,但不是重點。從近些年考研真題來看,考查很少,偶爾以選擇、填空的形式出現(xiàn)。
五、無窮級數(shù)部分:
這部分內(nèi)容對數(shù)二的考生不作要求。數(shù)一、三的考生需要掌握兩個重點:一是常數(shù)項級數(shù)性質(zhì)問題,尤其是如何判斷級數(shù)的斂散性;二是冪級數(shù)。考生要熟練掌握冪級數(shù)的收斂區(qū)間、收斂半徑、和函數(shù)以及冪級數(shù)的展開問題。
六、微分方程與差分方程部分:
差分方程只對數(shù)三考生要求,但不是重點。這里有兩個重點:一階線性微分方程;二階常系數(shù)齊次/非齊次線性微分方程。
【考研數(shù)學必考的知識點有哪些】相關文章:
考研數(shù)學每年必考的知識點有哪些01-26
考研數(shù)學有哪些問題是必考點12-05
考研英語語法必考的知識點有哪些06-09
高考理科數(shù)學有哪些必考的知識點06-14
考研英語必考的考點有哪些12-05
考研數(shù)學每年必考的知識點04-02
考研數(shù)學必考知識點總結11-07
考研數(shù)學有哪些復習的知識點06-10