3的倍數(shù)特征反思
在快速變化和不斷變革的新時代,我們要有一流的教學(xué)能力,所謂反思就是能夠迅速從一個場景和事態(tài)中抽身出來,看自己在前一個場景和事態(tài)中自己的表現(xiàn)。怎樣寫反思才更能起到其作用呢?以下是小編收集整理的3的倍數(shù)特征反思,希望能夠幫助到大家。
3的倍數(shù)特征反思1
《3的倍數(shù)的特征》是學(xué)生在學(xué)習(xí)過2.5倍數(shù)特征之后的又一內(nèi)容,因?yàn)?.5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——動手試驗(yàn)的過程中,概括歸納出了3的倍數(shù)特征。
我從學(xué)生的已有認(rèn)知出發(fā),引導(dǎo)學(xué)生先進(jìn)行合理的猜想,進(jìn)而引發(fā)學(xué)生從不同的角度驗(yàn)證自己的猜想,通過驗(yàn)證,學(xué)生自我否定了自己的猜想。此時學(xué)生處于“不憤不啟”的最佳的學(xué)習(xí)狀態(tài),他們迫切想知道3的倍數(shù)的'特征究竟是什么?這樣來調(diào)動學(xué)生學(xué)習(xí)的欲望,增強(qiáng)學(xué)生主動探究意識,有利于后面的探究學(xué)習(xí)。他們還認(rèn)為在我們實(shí)際生活中,當(dāng)你解決一個新問題時,一般沒有人告訴你解決這個問題會碰到什么困難。你只有碰到問題后,在解決問題的過程中方才清楚還需要哪些知識,然后,你要在原來的知識庫中去提取并靈活地應(yīng)用原有的知識。
新課堂呼喚“自主、合作、探究”,而真探究必然伴隨大量差錯的生成,學(xué)生總會出現(xiàn)各種各樣的錯誤,我們的課堂教學(xué)不應(yīng)該有意識地去避免學(xué)生犯錯誤。因?yàn)檎n堂是學(xué)生出錯的地方,出錯是學(xué)生的權(quán)利,學(xué)生的錯誤是勞動的成果,關(guān)鍵是要看我們教師如何看待學(xué)生的錯誤,有個教育專家說得好:“課堂上的錯誤是教學(xué)的巨大財富”。因此,我們教師在課堂中要有沉著冷靜的心理、海納百川的境界和從容應(yīng)變的機(jī)智,給學(xué)生一個出錯的機(jī)會和權(quán)利。
3的倍數(shù)特征反思2
我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——動手試驗(yàn)的過程中,概括歸納出了3的倍數(shù)特征。
找準(zhǔn)備知識中沖紛激發(fā)探索,在第一環(huán)節(jié)中我先讓學(xué)生復(fù)習(xí)2.5的倍數(shù)特征并對一些數(shù)據(jù)做出了判斷而后我們“誰來猜測一下3的倍數(shù)特征”激發(fā)學(xué)生探究的愿望。由于學(xué)生剛剛復(fù)習(xí)了2.5倍數(shù)的特征,知道只要看一個數(shù)的`個位。
因此在學(xué)習(xí)3的倍數(shù)特征時,自然會把“看個位”這一方法遷移過來。但實(shí)際上,卻不是這樣,于是新舊知識間的矛盾沖突使學(xué)生產(chǎn)生了困惑,有了新舊知識的矛盾沖突,就能激發(fā)起學(xué)生探究的愿望,這樣不反有利于學(xué)生對新知識的掌握,有效的將新知識納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識和能力。
3的倍數(shù)特征反思3
心理學(xué)原理表明,新異的刺激可以引起學(xué)生的注意和興趣。在教學(xué)中,根據(jù)不同的教材和要求,采取不同的教學(xué)方法,能夠引起學(xué)生學(xué)習(xí)的興趣,有利于創(chuàng)設(shè)良好的課堂氣氛。
教學(xué)3的倍數(shù)特征這一課時,教師組織學(xué)生進(jìn)行下列鞏固練習(xí):
下列數(shù)中3的倍數(shù)有:()
1435451003328767488
學(xué)生利用3的倍數(shù)的特征一下子就回答了上面的問題,得到了老師的肯定。這時我接著說:“我們來一場老師、學(xué)生打擂臺怎么樣?看誰說的3的倍數(shù)的數(shù)最多,我們看誰能考倒老師!边@時同學(xué)們興趣盎然,紛紛出題來考老師。
生:42
師:111
生:78
師:57
生:81
師:20xx
生:6891
…………
這時師故意出錯:369041
學(xué)生馬上發(fā)現(xiàn)了這個數(shù)不是3的倍數(shù),師問:“你能不能改一改其中的某個數(shù)字使它成為3的倍數(shù)!
生:“可以將1改為2。”
生:“可以將4改為5!
生:“可以將1改為5。”
生:“可以將1改為8。”
生:“可以將4改為2”
生:“可以將4改為8”
學(xué)生回答完后,我及時提問:“你們?yōu)槭裁床桓钠渲械?、6、9和0呢?”學(xué)生通過思考回答:“因?yàn)?、6、3、9每一個數(shù)都是3的倍數(shù),所以只要改4和1這兩個數(shù)就行了。”這時我及時指出:“判斷一個數(shù)是不是3的倍數(shù)可以用篩選法來判斷,在各數(shù)位的數(shù)字中先篩去3的倍數(shù)或和為3的倍數(shù)的數(shù)字,若余下的數(shù)字之和是3的.倍數(shù),原數(shù)就是3的倍數(shù),否則就不是。”這時我逐漸地出示下列這組數(shù)要求學(xué)生馬上判斷是否3的倍數(shù)。
56
561
5617
56178
561784
5617849
…………
這個鞏固練習(xí),有效地調(diào)動了學(xué)生的積極性,不斷激起學(xué)生認(rèn)知的內(nèi)驅(qū)力,使學(xué)生在探索的過程中,主動學(xué)習(xí)、主動探索,帶來了內(nèi)心的滿足感。
3的倍數(shù)特征反思4
站在跳板上學(xué)習(xí)數(shù)學(xué)——3的倍數(shù)的特征教學(xué)反思
《3的倍數(shù)的特征》看似一節(jié)知識簡單的課,但從教學(xué)實(shí)際來看,是我想得過于簡單了,教師注重的不應(yīng)該僅僅是對知識的掌握,更應(yīng)該使學(xué)生站在跳板上學(xué)習(xí)數(shù)學(xué),關(guān)注數(shù)學(xué)思維的發(fā)展 。
“3的倍數(shù)的特征”屬于數(shù)論的范疇,離學(xué)生的生活較遠(yuǎn),有一定的難度。而2、5的倍數(shù)的特征是學(xué)生學(xué)習(xí)這一課的基礎(chǔ)。所以,在教學(xué)“3的倍數(shù)的特征”時,我首先以學(xué)生原有認(rèn)知為基礎(chǔ),激發(fā)學(xué)生的探究欲望,利用學(xué)生剛學(xué)完“2、5的倍數(shù)的特征”產(chǎn)生的負(fù)遷移,直接拋出問題,激活了學(xué)生的原有認(rèn)知,學(xué)生自然而然地會將“2、5的.倍數(shù)的特征”遷移到“3的倍數(shù)的特征”的問題中,由此產(chǎn)生認(rèn)知沖突,萌發(fā)疑問,激發(fā)強(qiáng)烈的探究欲望,因此學(xué)生很快進(jìn)入問題情境,猜測、否定、反思、觀察、討論,使得大部分學(xué)生漸漸進(jìn)入了探究者的角色。但針對這樣的環(huán)節(jié),也有老師提出反對意見,他們認(rèn)為教師在教學(xué)中不僅要注重知識的正遷移,還要防止負(fù)遷移的產(chǎn)生,要能正確地預(yù)見學(xué)生學(xué)習(xí)中可能出現(xiàn)的錯誤,采取適當(dāng)措施,防患于未然,達(dá)到所謂“防微杜漸”的目的;他們滿足于學(xué)生的一路凱歌,陶醉于學(xué)生的盡善盡美,視學(xué)生的差錯為洪水猛獸。但是課堂就是學(xué)生出錯的地方,出錯是學(xué)生的權(quán)利,學(xué)生的錯誤是勞動的成果,關(guān)鍵是要看我們教師如何看待學(xué)生的錯誤,有個教育專家說得好:“課堂上的錯誤是教學(xué)的巨大財富”。正式因?yàn)槿绱,我們的新課堂也呼喚“自主、合作、探究”,而真探究必然伴隨大量差錯的生成,學(xué)生總會出現(xiàn)各種各樣的錯誤,我們的課堂教學(xué)不應(yīng)該有意識地去避免學(xué)生犯錯誤。因此,我們教師在課堂中要有沉著冷靜的心理、海納百川的境界和從容應(yīng)變的機(jī)智,給學(xué)生一個出錯的機(jī)會和權(quán)利。
其次,看一個數(shù)是不是2、5的倍數(shù),只需看這個數(shù)的個位。個位是0、2、4、6、8的數(shù)就是2的倍數(shù),個位是0、5的數(shù)就是5的倍數(shù)。而3的倍數(shù)特征則不然,一個數(shù)是不是3的倍數(shù),不能只看個位,而要看它所有所有數(shù)位上的數(shù)的和是不是3的倍數(shù)。在教學(xué)中,我和大多數(shù)的教師一樣,更多的是關(guān)注兩者的不同,注重讓學(xué)生對兩種特征進(jìn)行區(qū)分,因此,教學(xué)中往往刻意對比強(qiáng)化,凸顯這種差異。但這樣的處理很明顯在數(shù)論的角度上割裂了兩者的共同點(diǎn)。實(shí)際上教師在引導(dǎo)學(xué)生發(fā)現(xiàn)3的倍數(shù)的獨(dú)特特征的同時,也應(yīng)該注意引導(dǎo)學(xué)生歸納2、3、5倍數(shù)特征的共同點(diǎn)。別小看這寥寥數(shù)言的引導(dǎo),實(shí)質(zhì)它蘊(yùn)藏著深意。因?yàn)閺臄?shù)論角度講一個數(shù)能否被2、3、5乃至被其它數(shù)整除,其研究的理論基礎(chǔ)是一樣的:即如果各個數(shù)位上的數(shù)被某數(shù)除,所得的余數(shù)的和能夠被某數(shù)整除,那么這個數(shù)也一定能被某數(shù)整除。當(dāng)然,小學(xué)生由于知識和思維特點(diǎn)的限制,還不可能從數(shù)論的高度去建構(gòu)與理解。但是,這并不意味著教師不可以作相應(yīng)的滲透。事實(shí)上,正是由于有了教師看似無心實(shí)則有意的點(diǎn)撥:“其實(shí)3的倍數(shù)特征與2、5的倍數(shù)特征其實(shí)有一點(diǎn)還是很像的,不知同學(xué)們注意到?jīng)]有?”學(xué)生才可能從2、3、5倍數(shù)特征孤立、割裂、甚至是相互對立的表象中跳離出來,朦朧地感受到這三者之間的聯(lián)系:2、3、5倍數(shù)特征可以看作是一樣的,都是看它是不是誰的倍數(shù),只不過判斷一個數(shù)是不是2、5的倍數(shù),只需看這個數(shù)的個位是不是2、5的倍數(shù),而判斷一個數(shù)是不是3的倍數(shù)就要看它所有數(shù)位的和是不是3的倍數(shù)。
3的倍數(shù)特征反思5
1.以學(xué)生原有認(rèn)知為基礎(chǔ),激發(fā)學(xué)生的探究欲望。教師利用學(xué)生剛學(xué)完“2、5的倍數(shù)的特征”產(chǎn)生的負(fù)遷移,直接拋出問題,激活了學(xué)生的原有認(rèn)知,學(xué)生自然而然地會將“2、5的倍數(shù)的特征”遷移到解決“3的倍數(shù)特征”的問題,產(chǎn)生認(rèn)知沖突,萌發(fā)疑問,激發(fā)強(qiáng)烈的探究欲望。本案例中,學(xué)生很快進(jìn)入問題情境,猜測、否定、反思、觀察、討論,大部分學(xué)生漸漸進(jìn)入了探究者的角色。
2.以問題為中心組織學(xué)生展開探究活動。在上面案例中,教師注意突出學(xué)生的`主體地位,教師依據(jù)學(xué)生年齡特征和認(rèn)知水平設(shè)計具有探索性的問題,引導(dǎo)學(xué)生緊緊圍繞“3的倍數(shù)有什么特征”這個問題來開展學(xué)習(xí)活動,指導(dǎo)學(xué)生圍繞問題展開探究活動,并不斷組織師生之間、生生之間的交流和討論,逐步發(fā)現(xiàn)、歸納規(guī)律、得出結(jié)論,培養(yǎng)了學(xué)生的探索意識和分析、概括、驗(yàn)證、判斷等能力。
3的倍數(shù)特征反思6
今天我教學(xué)了3的倍數(shù)的特征,我首先復(fù)習(xí)2、5的倍數(shù)的特征,然后我出示了幾個不同的四位數(shù),問生:誰能很快判斷出哪些是3的倍數(shù)?想知道有什么竅門嗎?這們引入課題很順當(dāng),學(xué)生也很有興趣。下面,我先讓學(xué)生寫出50以內(nèi)3的倍數(shù),再觀察:3的倍數(shù)有什么特點(diǎn)?學(xué)生一時很難發(fā)現(xiàn),仍從個位上的數(shù)去觀察,但馬上被其他同學(xué)否定,當(dāng)時我心里有點(diǎn)擔(dān)心怎么看不來呢?,我啟發(fā)學(xué)生再看看個位和十位上的數(shù),通過交流后,在部分學(xué)生馬上發(fā)現(xiàn)把每個數(shù)的數(shù)字加起來的和除以3都是正好除的.,我讓學(xué)生用這個發(fā)現(xiàn)對書上第76頁的表格100以內(nèi)的數(shù)進(jìn)行驗(yàn)證一下,學(xué)生驗(yàn)證后我又讓學(xué)生從100以外的數(shù)來驗(yàn)證。從而得出了3的倍數(shù)的特征。再通過用1、2、6可以寫成哪些三位數(shù)?這些三位數(shù)是3的倍數(shù)嗎?由此有什么發(fā)現(xiàn)?讓學(xué)生進(jìn)一步明白3的倍數(shù)跟數(shù)字的位置沒有關(guān)系,只跟各位上數(shù)的和有關(guān)系。這樣學(xué)生在完成想想做做第5題時學(xué)生思考時就不會漏寫了。最后,通過后面的練習(xí),我覺得在教學(xué)某些知識時,最好老師不要輕易下結(jié)論,只有讓他們自己在反復(fù)實(shí)踐中自己得出結(jié)論,才能牢固地掌握知識。
3的倍數(shù)特征反思7
找準(zhǔn)知識之間的沖突并巧妙激發(fā)出來,這是一節(jié)課的出彩之處,剛開始我們先采用課本上百數(shù)表來研究,結(jié)果在一個班實(shí)踐后認(rèn)為效果并不是很理想,由于數(shù)太多,讓學(xué)生觀察3的倍數(shù)的這些數(shù)時,并從中找出相同的地方,結(jié)果,很多同學(xué)找了與本節(jié)課毫無關(guān)系的東西,浪費(fèi)了很多時間。在評課的時候,我們又討論是不是找一些數(shù)代表百數(shù)表,于是我設(shè)計了一個表格,讓學(xué)生用除法計算的`方法找到3的倍數(shù)的特征,并觀察這些數(shù),這些數(shù)的個位分別從0到9都有,讓學(xué)生知道3的倍數(shù)的特征跟數(shù)的個位沒有關(guān)系,然后從中又把像45和54,75和57,123和321等特殊的數(shù)單獨(dú)展示出來,讓學(xué)生觀察從中找出規(guī)律。結(jié)果我又重新上了這節(jié)課,效果比上節(jié)課要好。
這節(jié)課結(jié)束后,我感覺最大的缺憾之處,最后總結(jié)3的倍數(shù)特征時,應(yīng)放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而練習(xí)題方面,也應(yīng)形式面多樣化,如用卡片練習(xí)判斷,或通過打手勢的方法或先聽老師——這樣效率更高,課堂氛圍好,課堂不是同步,學(xué)生的發(fā)展始終是教學(xué)的落腳點(diǎn)。我們的教學(xué)應(yīng)著眼于學(xué)生對解決問題方法的感悟,這樣才可獲得最佳的效果。
3的倍數(shù)特征反思8
《3 的倍數(shù)的特征》本節(jié)課的教學(xué)活動,注重學(xué)生實(shí)踐操作,展開探究活動,組織學(xué)生進(jìn)行交流和探討,注重培養(yǎng)學(xué)生發(fā)現(xiàn)問題,解決問題的能力,讓學(xué)生經(jīng)歷科學(xué)探索的過程,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的正確性。我是從教學(xué)環(huán)節(jié)維度進(jìn)行觀課的,本節(jié)課有五個環(huán)節(jié)包括:一、復(fù)習(xí)舊知,直接導(dǎo)入。二、自主探究,合作驗(yàn)證。三、總結(jié)提升,共同驗(yàn)證。四、運(yùn)用結(jié)論,鞏固訓(xùn)練。五、全課小結(jié),課后延伸。每個環(huán)節(jié)環(huán)環(huán)相扣,設(shè)計合理。下面就說一下自己的想法。
一、以舊帶新,引入新課。
趙老師先復(fù)習(xí)了2、5的倍數(shù)的'特征,為這節(jié)課的學(xué)習(xí)打下了基礎(chǔ)。趙老師以學(xué)生原有認(rèn)知為基礎(chǔ),激發(fā)學(xué)生的探究欲望,利用學(xué)生剛學(xué)完“2、5的倍數(shù)的特征”遷移到“3的倍數(shù)的特征”的問題中,由此萌發(fā)疑問,激發(fā)強(qiáng)烈的探究欲望,因此學(xué)生很快進(jìn)入問題情境,猜測、否定、反思、觀察、討論,使得大部分學(xué)生漸漸進(jìn)入了探究者的角色。
二、親身經(jīng)歷,探索規(guī)律。
本節(jié)課教師努力嘗試構(gòu)建數(shù)學(xué)生態(tài)課堂,讓學(xué)生繼續(xù)利用小棒擺一擺,進(jìn)而發(fā)現(xiàn)不止是3根、6根小棒能擺出3的倍數(shù),9根也能“只要小棒的根數(shù)是3的倍數(shù),擺出來的數(shù)就是3的倍數(shù)!苯處煂ⅰ皠邮?jǐn)[小棒”升級為“腦中撥計數(shù)器”,將“直觀性思維”升華為“理性思維”,通過小組交流、集體驗(yàn)證,學(xué)生的探索發(fā)現(xiàn)離“3的倍數(shù)的特征”只有咫尺之遙。整節(jié)課讓學(xué)生經(jīng)歷“動手操作——觀察發(fā)現(xiàn)——舉例驗(yàn)證——?dú)w納總結(jié)”的探究過程,實(shí)現(xiàn)課程、師生、知識等多層次的互動。
三、精心選題,鞏固新知。
習(xí)題的設(shè)計力爭在突出重點(diǎn),突破難點(diǎn),遵循學(xué)生認(rèn)知規(guī)律的基礎(chǔ)上,體現(xiàn)基礎(chǔ)性、層次性、靈活性、生活性、趣味性。本節(jié)課教師設(shè)計了3道練習(xí)題。在鞏固練習(xí)部分,第(1)、(2)題是基本題;第(3)題,教師努力拉近數(shù)學(xué)與生活的聯(lián)系。把數(shù)學(xué)和生活有機(jī)聯(lián)系起來,使學(xué)生體會到數(shù)學(xué)在現(xiàn)實(shí)生活中作用和價值,初步學(xué)會用數(shù)學(xué)的眼光去觀察事物、思考問題,樹立學(xué)好數(shù)學(xué)、用好數(shù)學(xué)的志趣。
四、回顧梳理,舉一反。
在學(xué)生學(xué)習(xí)的過程中注意“學(xué)習(xí)方法”的指導(dǎo),讓學(xué)生感受到掌握方法才能舉一反三,真正做到觸類旁通。最后一個環(huán)節(jié)設(shè)計了讓學(xué)生靜靜的回顧這節(jié)課的學(xué)習(xí)歷程“動手操作——觀察發(fā)現(xiàn)——舉例驗(yàn)證——?dú)w納總結(jié)”,使其在數(shù)學(xué)思想上做進(jìn)一步的提升。
3的倍數(shù)特征反思9
課堂上經(jīng)常會出現(xiàn)類似上述案例中的“超前行為”,即有些學(xué)生提前把要探究的新知識和盤托出。我們的習(xí)慣做法就是變“探索”為“驗(yàn)證”,當(dāng)然有些知識的教學(xué)采用這種方式是有效的,然而本課中“驗(yàn)證”的過程真能取代“探究發(fā)現(xiàn)”的過程嗎?僅僅舉幾個例子試一試,驗(yàn)證方法單一,思維含量低,學(xué)生充其量只能算是執(zhí)行操作命令的“計算器”,又能獲得哪些有益的發(fā)展?如果經(jīng)常進(jìn)行這樣的教學(xué),還容易使學(xué)生形成浮躁淺薄,不求甚解,甚至只要結(jié)論的不良學(xué)習(xí)風(fēng)氣。怎么辦,置之不理嗎?如果這樣,不僅沒有尊重學(xué)生已有的知識經(jīng)驗(yàn),而且在已經(jīng)揭開“謎底”的情況下,再試圖引導(dǎo)學(xué)生進(jìn)行猜想、實(shí)驗(yàn)、發(fā)現(xiàn),體驗(yàn)遭受挫折后取得成功的那種激動,也只能是一種奢望。那么又該如何激發(fā)學(xué)生探究的熱情,促使學(xué)生進(jìn)行深入探究呢?
1.找準(zhǔn)知識間的沖突,激發(fā)探究的愿望。
學(xué)生剛剛學(xué)習(xí)了2、5的倍數(shù)的特征,知道只要看一個數(shù)的個位,因此在學(xué)習(xí)3的倍數(shù)的特征時,自然會把“看個位”這一方法遷移過來。而實(shí)際上,3的倍數(shù)的特征,卻要把各個位上的.數(shù)加起來研究。于是新舊知識之間的矛盾沖突使學(xué)生產(chǎn)生了困惑,“為什么2或5的倍數(shù)只看個位?”“為什么3的倍數(shù)要把各個位上的數(shù)加起來研究?”……學(xué)生急于想了解這些為什么,便會自覺地進(jìn)入到自主探究的狀態(tài)之中。
2.激活學(xué)習(xí)中的困惑,讓探究走向深入。
創(chuàng)造和發(fā)現(xiàn)往往是由驚訝和困惑開始。對比兩次教學(xué),第一次教學(xué)由于忽視了學(xué)習(xí)中的困惑,學(xué)生對于3的倍數(shù)的特征理解并不透徹,探索的體驗(yàn)也并不深刻。第二次教學(xué)留給學(xué)生質(zhì)疑的時空,巧設(shè)沖突,讓學(xué)生進(jìn)行新舊知識的對比,將困惑激發(fā)出來,通過學(xué)生間相互啟發(fā)、相互質(zhì)疑,對問題的思考漸漸完整而清晰。學(xué)生不但經(jīng)歷由困惑到明了的過程,而且思維不斷走向深入,獲得了更有價值的發(fā)現(xiàn),探究能力也得到切實(shí)提高。當(dāng)然,學(xué)生在學(xué)習(xí)中可能產(chǎn)生怎樣的困惑,面對這一困惑又該如何恰當(dāng)引導(dǎo),尚需要教師課前精心預(yù)設(shè)。
3的倍數(shù)特征反思10
《3的倍數(shù)的特征》是學(xué)生在學(xué)習(xí)過2.5倍數(shù)特征之后的又一內(nèi)容,因?yàn)?.5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的`倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——動手試驗(yàn)的過程中,概括歸納出了3的倍數(shù)特征。
1、找準(zhǔn)知識沖突激發(fā)探索愿望。
找準(zhǔn)備知識中沖紛激發(fā)探索,在第一環(huán)節(jié)中我先讓學(xué)生復(fù)習(xí)2.5的倍數(shù)特征并對一些數(shù)據(jù)做出了判斷而后我們“誰來猜測一下3的倍數(shù)特征”激發(fā)學(xué)生探究的愿望。由于學(xué)生剛剛復(fù)習(xí)了2.5倍數(shù)的特征,知道只要看一個數(shù)的個位,因此在學(xué)習(xí)3的倍數(shù)特征時,自然會把“看個位”這一方法遷移過來。但實(shí)際上,卻不是這樣,于是新舊知識間的矛盾沖突使學(xué)生產(chǎn)生了困惑,有了新舊知識的矛盾沖突,就能激發(fā)起學(xué)生探究的愿望,這樣不反有利于學(xué)生對新知識的掌握,有效的將新知識納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識和能力。
2、激發(fā)學(xué)習(xí)中的困惑,讓探究走向深入。
找準(zhǔn)知識之間的沖突并巧妙激發(fā)出來,這是一節(jié)課的出彩之處,而我從孩子們的學(xué)號為入重點(diǎn),讓孩子們判斷自己的學(xué)號是否是3的倍數(shù),并再次探究3的倍數(shù)特征,并且發(fā)現(xiàn)3的倍數(shù)和數(shù)字排列順序的有關(guān)系。但和這個數(shù)的個位上的數(shù)字有關(guān)。使之所探究的問題是漸漸完整而清晰,而后我又組織孩子們用擺小棒的方法來探究和驗(yàn)證,這種層層遞進(jìn)環(huán)環(huán)相扣的方法,促使探究活動走向深入,讓學(xué)生獲得更大的發(fā)展。
3、課后反思使之完美。
這節(jié)課結(jié)束后,我感覺最大的缺憾之處,最后點(diǎn)選了的倍數(shù)特征時,應(yīng)放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而老練習(xí)題方面,也應(yīng)形式面多樣化,如用卡片練習(xí)判斷,或通過打手勢的方法或先聽老師——這樣效率更高,課堂氛圍好,課堂不是同步,學(xué)生的發(fā)展始終是教學(xué)的落腳點(diǎn)。我們的教學(xué)應(yīng)著眼于學(xué)生對解決問題方法的感悟,這樣才可獲得可持續(xù)發(fā)展的動力。
3的倍數(shù)特征反思11
本學(xué)期第一次師徒活動,我的師傅秦老師聽了我《3的倍數(shù)的特征》一課,課后與秦老師溝通交流了本節(jié)課我的設(shè)計意圖,秦老師也針對我的課給我進(jìn)行了說課,F(xiàn)結(jié)合說課及課后反思,總結(jié)如下:
3的倍數(shù)的特征的教學(xué),應(yīng)著力讓學(xué)生在學(xué)習(xí)過程中獲得“山窮水盡”,“柳暗花明”的探究體驗(yàn),為此,課前我沒有安排預(yù)習(xí)的作業(yè)。設(shè)計了以下幾個環(huán)節(jié):
一、課前熱身,舊知復(fù)習(xí)
我設(shè)計了一些練習(xí)題,如填一填、寫一寫、想一想,把舊知2、5倍數(shù)的特征的知識復(fù)習(xí)到位,讓學(xué)生通過口答、動筆使學(xué)生動腦、動口、動手,在課的開始就讓學(xué)生動起來,大大提高了學(xué)生的學(xué)習(xí)興趣。
二、認(rèn)知沖突,揭題板書
復(fù)習(xí)舊知后,我緊接著追問:“判斷一個數(shù)是不是2或5的倍數(shù),只要看什么”,這樣的特征同樣適用于今天我們要學(xué)習(xí)的3的倍數(shù)的特征嗎?以誘發(fā)、強(qiáng)化認(rèn)知沖突,揭題板書,從而讓學(xué)生產(chǎn)生質(zhì)疑,帶著疑問,有一種急切的心情,產(chǎn)生學(xué)習(xí)新知的欲望。
三、合作探究,學(xué)習(xí)新知
這個環(huán)節(jié)我沒有急切地讓學(xué)生直接去找3的倍數(shù)的特征。學(xué)習(xí)新知的模式為:猜想——觀察——驗(yàn)證——?dú)w納。所以我先讓學(xué)生去猜想,然后用兩種方法進(jìn)行觀察并驗(yàn)證:擺小棒和百數(shù)表。擺小棒,我采用合作探究的學(xué)習(xí)方式,4人一組,分工明確,代表發(fā)言,發(fā)現(xiàn)了規(guī)律。雖然學(xué)生們的結(jié)論不是很精確,但是總結(jié)的還是很清楚,說明學(xué)生們通過動手操作,真正經(jīng)歷了知識形成的過程。然后再用百數(shù)表圈數(shù)的方法觀察發(fā)現(xiàn)并驗(yàn)證規(guī)律,從而歸納出3的倍數(shù)的.特征的具體概念。緊接著在進(jìn)行2、5倍數(shù)的特征和3的倍數(shù)的特征的對比,讓學(xué)生們加深理解。
四、鞏固練習(xí),內(nèi)化提升
練習(xí)的設(shè)計上也是由基礎(chǔ)到提升再到拓展,從抽象的數(shù)到解決問題,體會數(shù)學(xué)知識與生活的密切聯(lián)系。
亮點(diǎn):
舊知復(fù)習(xí)全面,新知探究讓學(xué)生全員參與,真正動起來,讓學(xué)生經(jīng)歷了新知形成的過程,練習(xí)的設(shè)計上新穎,有梯度。
不足:
1、在讓學(xué)生產(chǎn)生質(zhì)疑的同時,要讓學(xué)生有思考的時間,充分給學(xué)生辯論的時間。
2、在讓學(xué)生動手?jǐn)[小棒時,要求不太明確,應(yīng)先舉個例子,讓學(xué)生明確小棒的根數(shù)就是所擺的數(shù)位上數(shù)的和。
3、在對比2、5倍數(shù)的特征和3的倍數(shù)的特征時,應(yīng)給予充分的時間讓學(xué)生消化一下,或讓學(xué)生舉例,然后再把結(jié)論板書,這樣學(xué)生印象更深刻。
評價:多動腦、動口、動手,調(diào)動學(xué)生的多種感官參與學(xué)習(xí),概念學(xué)習(xí)就不會枯燥。如果每節(jié)新課過后都能這樣反思,你會愈加成熟!
3的倍數(shù)特征反思12
本節(jié)課探究3的倍數(shù)的特征之前,我還是先讓學(xué)生寫出50以內(nèi)3的倍數(shù),然后讓學(xué)生觀察這些數(shù)有何特征,大部分同學(xué)找不著規(guī)律,個別同學(xué)可能是受上節(jié)課的影響,說出了:個位上是0、1、2、3、4、5、6、7、8、9的數(shù)就是3的倍數(shù),但馬上就被其他同學(xué)推翻了。
然后我就出示計數(shù)器,依次撥出3的'倍數(shù),讓學(xué)生觀察一共用了幾顆珠子,讓學(xué)生體會到有幾顆珠子就是各個數(shù)位上數(shù)的和,發(fā)現(xiàn)珠子的顆數(shù)正好是3的倍數(shù),也就是各個數(shù)位上數(shù)的和是3的倍數(shù),那么這個數(shù)就是3的倍數(shù)。說實(shí)話,學(xué)生對于這一規(guī)律,不是很容易接受,在后來的練習(xí)中,才慢慢體會到。
“想想做做”的五道題設(shè)計得比較好,體現(xiàn)了分層,特別是最后一道,學(xué)生通過交流討論后,得出了先選數(shù)后組數(shù)的思路,練習(xí)的效果比較好。
3的倍數(shù)特征反思13
3的倍數(shù)的特征比較隱蔽,學(xué)生一般想不到從“各位上數(shù)的和”去研究。上課開始先讓學(xué)生回顧舊知:2的倍數(shù)和5的倍數(shù)有什么特征?學(xué)生們發(fā)現(xiàn)都只要看一個數(shù)個位上的數(shù)就行了,于是很順利地設(shè)下了陷阱:“同學(xué)們,那猜猜看3的倍數(shù)有什么特征呢?猜測是一種常用的數(shù)學(xué)思考方法,讓學(xué)生猜測3的倍數(shù)有什么特征,能較好地調(diào)動學(xué)生的學(xué)習(xí)積極性。由于受2的倍數(shù)和5的倍數(shù)的特征的影響,有學(xué)生很自然猜測到“個位上是0,3,6,9的數(shù)一定是3的倍數(shù)”,還有學(xué)生猜測“個位上的數(shù)字加起來是3,6,9一定是3的`倍數(shù)”,能想到這點(diǎn)應(yīng)該說是了不起的。本課到這里都很順利,因?yàn)橥耆谖业念A(yù)設(shè)之中。
下面進(jìn)入驗(yàn)證環(huán)節(jié),先讓學(xué)生判斷自己的學(xué)號是不是3的倍數(shù),再在這些學(xué)號中挑出個位上是0,3,6,9的數(shù),通過交流,學(xué)生發(fā)現(xiàn)這些數(shù)不一定是3的倍數(shù)。學(xué)生初步發(fā)現(xiàn)了3的倍數(shù)的特征與2和5的倍數(shù)不同,不表現(xiàn)在數(shù)的個位上,那3的倍數(shù)究竟與什么有關(guān)系呢?于是進(jìn)入到動手操作環(huán)節(jié)。在此基礎(chǔ)上,抽象成各位上數(shù)的和,是理解3的倍數(shù)特征的關(guān)鍵。
“試一試”是數(shù)學(xué)的第三步,如果一個數(shù)不是3的倍數(shù),那么這個數(shù)各位數(shù)的和不是3的倍數(shù),利用反例進(jìn)一步證實(shí)3的倍數(shù)的特征,體現(xiàn)了數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的確定性。隨后設(shè)計了一系列習(xí)題,使學(xué)生得到鞏固提高。
3的倍數(shù)特征反思14
《3的倍數(shù)的特征》的教學(xué)是在第一次教學(xué)之后,學(xué)校組織縣級教學(xué)能手選撥賽時候第二次上,可以說是“一課兩上”。我在第二次備課時完全從另一個角度來處理教材,收獲頗豐。下面我就本節(jié)課前后兩次上課反思如下:
第一次上課我是讓學(xué)生圈出100以內(nèi)3的倍數(shù),去觀察3的倍數(shù)的特征,由此總結(jié)出3的倍數(shù)的特征,然后實(shí)際應(yīng)用,鞏固練習(xí)。效果一般。而第二次上課時我是這樣做的:使學(xué)生在原有認(rèn)知的基礎(chǔ)上產(chǎn)生認(rèn)知沖突,在學(xué)習(xí)2、5倍數(shù)特征的基礎(chǔ)上,讓學(xué)生猜測是不是3的倍數(shù)的特征也要去看數(shù)的個位呢,進(jìn)而產(chǎn)生新的探索欲望,讓后在百數(shù)表中圈出3的倍數(shù)的特征,接著借助學(xué)生熟悉的計數(shù)器進(jìn)行兩個實(shí)驗(yàn),實(shí)驗(yàn)一:驗(yàn)證3的倍數(shù)的特診,實(shí)驗(yàn)二:驗(yàn)證不是3的倍數(shù)的的數(shù)的特征。最后實(shí)踐應(yīng)用,課堂檢測。
整個教學(xué)過程突出了對學(xué)生“提出問題—探索問題—解決問題”的能力培養(yǎng),學(xué)生能在猜想、操作、驗(yàn)證、交流、反思、歸納的數(shù)學(xué)活動中,獲得較為豐富的數(shù)學(xué)經(jīng)驗(yàn),也有助于創(chuàng)造性的'培養(yǎng)。這就要求我們教師首先要具有創(chuàng)造精神,注重設(shè)計寬松和諧民主的教學(xué)氛圍,尊重學(xué)生,抓住一切可以利用的機(jī)會,激發(fā)學(xué)生的創(chuàng)新欲望,學(xué)生的創(chuàng)造意識才能得以培養(yǎng),個性才能充分發(fā)展。
反思這節(jié)課的不足我覺得在每個環(huán)節(jié)的過渡上要做的更加自然、一氣呵成會更好。由于本節(jié)課按照賽教要求只有30分鐘,時間的把握做的還不夠恰到好處?傊,教無定法,學(xué)海無涯,需要我不斷的學(xué)習(xí)和實(shí)踐,不斷提高自身素質(zhì)和專業(yè)水平,大力提高教學(xué)質(zhì)量。
3的倍數(shù)特征反思15
《3的倍數(shù)的特征》的教學(xué)是五年級數(shù)學(xué)上冊第三單元“因數(shù)與倍數(shù)”中一個重要知識點(diǎn),是學(xué)生在學(xué)習(xí)了2和5的倍數(shù)特征之后的新內(nèi)容。
3的倍數(shù)的特征與2和5的倍數(shù)的特征有很大差別,2和5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我在本節(jié)課設(shè)計理念上,突出以學(xué)生為主體,教師為主導(dǎo),方法為主線的原則,從現(xiàn)象到本質(zhì),從質(zhì)疑到解疑。當(dāng)然本節(jié)課也存在很多問題,下面我進(jìn)行做幾點(diǎn)反思。
1、瞄準(zhǔn)目標(biāo),把握關(guān)鍵
在導(dǎo)入環(huán)節(jié),我通過復(fù)習(xí)舊知識進(jìn)行“熱身”。由于學(xué)生已經(jīng)掌握了2和5倍數(shù)的特征,知道只要看一個數(shù)的個位就能判斷一個數(shù)是不是2或5的倍數(shù),因此在學(xué)習(xí)3的倍數(shù)特征時,自然會把“看個位”這一方法遷移過來,盡管是負(fù)遷移。實(shí)際上,鮮明的沖突讓學(xué)生發(fā)現(xiàn)卻不是這樣,于是新舊知識間的矛盾沖突使學(xué)生產(chǎn)生了困惑,有了新舊知識的矛盾沖突,就能激發(fā)起學(xué)生探究的愿望,這樣有利于學(xué)生對新知識的掌握,有效的將新知識納入到原有的'認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識和能力。
2、經(jīng)歷過程,授之以漁
猜想3的倍數(shù)特征是基礎(chǔ),在學(xué)生得出猜想后,我便引導(dǎo)學(xué)生找出百數(shù)表中3的倍數(shù)去驗(yàn)證,并在驗(yàn)證中推翻了剛才的猜想。驗(yàn)證也是有技巧的,30以內(nèi)即可發(fā)現(xiàn)3的倍數(shù)中,個位上可能是10個數(shù)字中的任何一個,之前的判斷已經(jīng)站不住腳。之后繼續(xù)探究,在100以內(nèi),基本可以發(fā)現(xiàn)規(guī)律,但為了嚴(yán)謹(jǐn),必須跳出百數(shù)表,在100以上的數(shù)中去驗(yàn)證這個規(guī)律。最后,引導(dǎo)學(xué)生理解這個結(jié)論背后的原理,為什么它的規(guī)律和之前的規(guī)律不一樣?這樣一來,學(xué)生不僅學(xué)會本節(jié)課知識,更掌握了科學(xué)的探究方法。
3、追求本真,知其所以然
本節(jié)課的目標(biāo)定位上,我考慮到學(xué)生的已有認(rèn)知基礎(chǔ),我決定引導(dǎo)學(xué)生探索3的倍數(shù)的特征背后的道理。這一嘗試建立在我對學(xué)生學(xué)情把握的基礎(chǔ)上,因?yàn)?的倍數(shù)的特征的結(jié)論一但得出,運(yùn)用起來沒有難度,后面的練習(xí)往往成了“休閑時間”,而進(jìn)一步提升探索難度,無疑是開發(fā)思維的良好契機(jī)。我運(yùn)用數(shù)形結(jié)合的方法逐步深入,最后還是把話語權(quán)留給學(xué)生,這樣就給予不同學(xué)生各自適應(yīng)的個性化學(xué)習(xí)方略,真正做到了讓每位同學(xué)在數(shù)學(xué)上都得到發(fā)展。
【3的倍數(shù)特征反思】相關(guān)文章:
3的倍數(shù)的特征反思08-31
3的倍數(shù)的特征反思[精]08-31
3的倍數(shù)特征反思15篇(精華)03-10
棕竹的特征09-06
《倍數(shù)與因數(shù)》教學(xué)紀(jì)實(shí)09-10
倍數(shù)和因數(shù)的教學(xué)后記08-11
職場小人的特征12-18
不聚財?shù)娘L(fēng)水特征02-26