av手机免费在线观看,国产女人在线视频,国产xxxx免费,捆绑调教一二三区,97影院最新理论片,色之久久综合,国产精品日韩欧美一区二区三区

八年級數(shù)學知識點

時間:2023-07-17 17:10:56 數(shù)學 我要投稿

八年級數(shù)學必備知識點

  在平平淡淡的學習中,大家都沒少背知識點吧?知識點就是掌握某個問題/知識的學習要點。掌握知識點有助于大家更好的學習。下面是小編為大家整理的八年級數(shù)學必備知識點,歡迎閱讀與收藏。

八年級數(shù)學必備知識點

  八年級數(shù)學知識總結

  一、等腰三角形

  1、等腰三角形的性質:

 、.等腰三角形的兩個底角相等。(等邊對等角);

 、.等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。(三線合一)。

  推論:

 、俚妊苯侨切蔚膬蓚底角相等且等于45°;

 、诘妊切蔚牡捉侵荒転殇J角,不能為鈍角(或直角),但頂角可為鈍角(或直角)。

  2、等腰三角形的判定:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等。(等角對等邊)。

  二、等邊三角形

  1、等邊三角形的性質:等邊三角形的三個角都相等,并且每一個角都等于60°。

  2、等邊三角形的判定:

 、偃齻角都相等的三角形是等邊三角形。

  ②有一個角是60°的等腰三角形是等邊三角形。

  直角三角形中,30°角所對的直角邊等于斜邊的一半。直角三角形斜邊上的中線等于斜邊的一半。

  三、三角形中的中位線

  1、軸對稱圖形的概念:連接三角形兩邊中點的線段叫做三角形的中位線。

  2、三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半。

  3、三角形中位線定理的作用:

  位置關系:可以證明兩條直線平行。 數(shù)量關系:可以證明線段的倍分關系。

  常用結論:任一個三角形都有三條中位線,由此有:

  結論1:三條中位線組成一個三角形,其周長為原三角形周長的一半。 結論2:三條中位線將原三角形分割成四個全等的三角形。

  結論3:三條中位線將原三角形劃分出三個面積相等的平行四邊形。 結論4:三角形一條中線和與它相交的中位線互相平分。

  結論5:三角形中任意兩條中位線的夾角與這夾角所對的三角形的頂角相等。

  八年級數(shù)學知識重點

  分數(shù)的加減法

  1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來.

  2.通分和約分都是依據(jù)分式的基本性質進行變形,其共同點是保持分式的值不變.

  3.一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備.

  4.通分的依據(jù):分式的基本性質.

  5.通分的關鍵:確定幾個分式的公分母.

  通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母.

  6.類比分數(shù)的通分得到分式的通分:

  把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.

  7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。

  同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。

  8.異分母的分式加減法法則:異分母的分式相加減,先通分,變?yōu)橥帜傅姆质,然后再加減.

  9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括號.

  10.對于整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分.

  11.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然后再通分,這樣可使運算簡化.

  12.作為最后結果,如果是分式則應該是最簡分式.

  數(shù)學八年級知識點提綱

  一、勾股定理

  1、勾股定理

  直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即a2+b2=c2。

  2、勾股定理的逆定理

  如果三角形的三邊長a,b,c有這種關系,那么這個三角形是直角三角形。

  3、勾股數(shù)

  滿足的三個正整數(shù),稱為勾股數(shù)。

  常見的勾股數(shù)組有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(這些勾股數(shù)組的倍數(shù)仍是勾股數(shù))。

  二、證明

  1、對事情作出判斷的句子,就叫做命題。即:命題是判斷一件事情的句子。

  2、三角形內(nèi)角和定理:三角形三個內(nèi)角的和等于180度。

  (1)證明三角形內(nèi)角和定理的思路是將原三角形中的三個角湊到一起組成一個平角。一般需要作輔助。

  (2)三角形的外角與它相鄰的內(nèi)角是互為補角。

  3、三角形的外角與它不相鄰的內(nèi)角關系

  (1)三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和。

  (2)三角形的一個外角大于任何一個和它不相鄰的內(nèi)角。

  4、證明一個命題是真命題的基本步驟

  (1)根據(jù)題意,畫出圖形。

  (2)根據(jù)條件、結論,結合圖形,寫出已知、求證。

  (3)經(jīng)過分析,找出由已知推出求證的途徑,寫出證明過程。在證明時需注意:

 、僭谝话闱闆r下,分析的過程不要求寫出來。

 、谧C明中的每一步推理都要有根據(jù)。如果兩條直線都和第三條直線平行,那么這兩條直線也相互平行。

  三、數(shù)據(jù)的分析

  1、平均數(shù)

 、僖话愕兀瑢τ趎個數(shù)x1x2....xn,我們把(x1+x2+xx+xn)叫做這n個數(shù)的算數(shù)平均數(shù),簡稱平均數(shù)記為。

 、谠趯嶋H問題中,一組數(shù)據(jù)里的各個數(shù)據(jù)的“重要程度”未必相同,因而在計算,這組數(shù)據(jù)的平均數(shù)時,往往給每個數(shù)據(jù)一個權,叫做加權平均數(shù)。

  2、中位數(shù)與眾數(shù)

 、僦形粩(shù):一般地,n個數(shù)據(jù)按大小順序排列,處于最中間位置的一個數(shù)據(jù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)。

  ②一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。

  ③平均數(shù)、中位數(shù)和眾數(shù)都是描述數(shù)據(jù)集中趨勢的統(tǒng)計量。

 、苡嬎闫骄鶖(shù)時,所有數(shù)據(jù)都參加運算,它能充分地利用數(shù)據(jù)所提供的信息,因此在現(xiàn)實生活中較為常用,但他容易受極端值影響。

 、葜形粩(shù)的優(yōu)點是計算簡單,受極端值影響較小,但不能充分利用所有數(shù)據(jù)的信息。

 、薷鱾數(shù)據(jù)重復次數(shù)大致相等時,眾數(shù)往往沒有特別意義。

  3、從統(tǒng)計圖分析數(shù)據(jù)的集中趨勢

  中考八年級上冊數(shù)學知識點

  一、函數(shù):

  一般地,在某一變化過程中有兩個變量x與y,如果給定一個x值,相應地就確定了一個y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。

  二、自變量取值范圍

  使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實數(shù)),分式(分母不為0)、二次根式(被開方數(shù)為非負數(shù))、實際意義幾方面考慮。

  三、函數(shù)的三種表示法及其優(yōu)缺點

  (1)關系式(解析)法

  兩個變量間的函數(shù)關系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做關系式(解析)法。

  (2)列表法

  把自變量x的一系列值和函數(shù)y的對應值列成一個表來表示函數(shù)關系,這種表示法叫做列表法。

  (3)圖象法

  用圖象表示函數(shù)關系的方法叫做圖象法。

  四、由函數(shù)關系式畫其圖像的一般步驟

  (1)列表:列表給出自變量與函數(shù)的一些對應值

  (2)描點:以表中每對對應值為坐標,在坐標平面內(nèi)描出相應的點

  (3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。

  五、正比例函數(shù)和一次函數(shù)

  1、正比例函數(shù)和一次函數(shù)的概念

  一般地,若兩個變量x,y間的關系可以表示成(k,b為常數(shù),k0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。

  特別地,當一次函數(shù)中的b=0時(即)(k為常數(shù),k0),稱y是x的正比例函數(shù)。

  2、一次函數(shù)的圖像:所有一次函數(shù)的圖像都是一條直線

  3、一次函數(shù)、正比例函數(shù)圖像的主要特征:一次函數(shù)的圖像是經(jīng)過點(0,b)的直線;正比例函數(shù)的圖像是經(jīng)過原點(0,0)的直線。

  第七章知識點

  1、二元一次方程

  含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的整式方程叫做二元一次方程。

  2、二元一次方程的解

  適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。

  3、二元一次方程組

  含有兩個未知數(shù)的兩個一次方程所組成的一組方程,叫做二元一次方程組。

  4、二元一次方程組的解

  二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。

  5、二元一次方程組的解法

  (1)代入(消元)法(2)加減(消元)法

  第八章知識點

  1、刻畫數(shù)據(jù)的集中趨勢(平均水平)的量:平均數(shù)、眾數(shù)、中位數(shù)

  2、平均數(shù)

  (2)加權平均數(shù):

  3、眾數(shù)

  一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。

  4、中位數(shù)

  一般地,將一組數(shù)據(jù)按大小順序排列,處于最中間位置的一個數(shù)據(jù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)。

  數(shù)學八年級上冊坐標知識點

  一、平面直角坐標系:

  在平面內(nèi)有公共原點而且互相垂直的兩條數(shù)軸,構成了平面直角坐標系。

  二、知識點與題型總結:

  1、由點找坐標:

  A點的坐標記作A( 2,1 ),規(guī)定:橫坐標在前,縱坐標在后。

  2、由坐標找點:例找點B( 3,-2 ) ?

  由坐標找點的方法:先找到表示橫坐標與縱坐標的點,然后過這兩點分別作x軸與y軸的垂線,垂線的交點就是該坐標對應的點。

  各象限點坐標的符號:

 、偃酎cP(x,y)在第一象限,則x > 0,y > 0 ;

  ②若點P(x,y)在第二象限,則x < 0,y > 0 ;

 、廴酎cP(x,y)在第三象限,則x < 0,y < 0 ;

 、苋酎cP(x,y)在第四象限,則x > 0,y < 0 。

  典型例題:

  例1、點P的坐標是(2,-3),則點P在第四象限。

  例2、若點P(x,y)的坐標滿足xy>0,則點P在第一或三象限。

  例3、若點A的坐標為(a^2+1, -2–b^2) ,則點A在第四象限。

  4、坐標軸上點的坐標符號:

  坐標軸上的點不屬于任何象限。

 、 x軸上的點的縱坐標為0,表示為(x,0),

 、 y軸上的點的橫坐標為0,表示為(0,y),

 、墼c(0,0)既在x軸上,又在y軸上。

  例4、點P(x,y )滿足xy = 0,則點P在x軸上或y軸上。 .

  5、與坐標軸平行的兩點連線:

 、偃鬉B‖ x軸,則A、B的縱坐標相同;

 、谌鬉B‖ y軸,則A、B的橫坐標相同。

  例5、已知點A(10,5),B(50,5),則直線AB的位置特點是(A )

  A、與x軸平行B、與y軸平行C、與x軸相交,但不垂直D、與y軸相交,但不垂直

  6、象限角平分線上的點:

 、偃酎cP在第一、三象限角的平分線上,則P( m, m );

 、谌酎cP在第二、四象限角的平分線上,則P( m, -m )。

  例6、已知點A(2a+1,2+a)在第二象限的平分線上,試求A的坐標。

  解:由條件可知:2a+1 +(2+a)=0,解得a = -1,

  ∴ A(-1,1)。

  例7、已知點M(a+1,3a-5)在兩坐標軸夾角的平分線上,試求M的坐標。

  解:當在一、三象限角平分線上時,a+1=3a-5,

  解得:a=3 ∴ M(4,4)

  當在二、四象限角平分線上時,a+1+(3a-5 )=0,

  解得:a=1 ∴ M(2,-2)

  ∴M的坐標為(4,4)或(2,-2)

  7、關于坐標軸、原點的對稱點:

  ①點(a, b )關于X軸的對稱點是(a , -b );

 、邳c(a, b )關于Y軸的對稱點是( -a , b );

 、埸c(a, b )關于原點的對稱點是( -a , -b )。

  例8、已知點A(3a-1,1+a)在第一象限的平分線上,試求A關于原點的對稱點的坐標。

  解:由條件得:3a-1=1+a解得:a=1,∴ A(2,2),

  ∴ A關于原點的對稱點的坐標為(-2,-2)。

  8、點到坐標軸的距離:

 、冱c( x, y )到x軸的距離是∣y∣;

 、邳c( x, y )到x軸的距離是∣x∣。

  例9、點P到x軸、y軸的距離分別是2,1,則點P的坐標可能為?

  答案:(1,2)、(1,-2)、(-1,2)、(-1,-2) 。

  三、知識拓展與提高:

  例10、在平面直角坐標系中,已知兩點A(0,1),B(8,5),點P在x軸上,則PA + PB的最小值是多少?

  解:作點A(0,1)關于x軸的對稱點A(0,-1),連接AB與x軸交于點P,

  則AB路徑最短,即PA + PB最小。

  根據(jù)勾股定理得:AB = √[(1+5)^2 + 8^2] = 10 。

  ∴PA + PB的最小值是10 。

  如何學好初中數(shù)學的方法

  多做練習題

  要想學好初中數(shù)學,必須多做練習,我們所說的“多做練習”,不是搞“題海戰(zhàn)術”。只做不思,不能起到鞏固概念,拓寬思路的作用,而且有“副作用”:把已學過的知識攪得一塌糊涂,理不出頭緒,浪費時間又收獲不大,我們所說的“多做練習”,是要大家在做了一道新穎的題目之后,多想一想:它究竟用到了哪些知識,是否可以多解,其結論是否還可以加強、推廣等等。

  課后總結和反思

  在進行單元小結或學期總結時,要做到以下幾點:一看:看書、看筆記、看習題,通過看,回憶、熟悉所學內(nèi)容;二列:列出相關的知識點,標出重點、難點,列出各知識點之間的關系,這相當于寫出總結要點;三做:在此基礎上有目的、有重點、有選擇地解一些各種檔次、類型的習題,通過解題再反饋,發(fā)現(xiàn)問題、解決問題。

  初中數(shù)學有理數(shù)知識點

  1、有理數(shù)的加法運算

  同號兩數(shù)來相加,絕對值加不變號。

  異號相加大減小,大數(shù)決定和符號。

  互為相反數(shù)求和,結果是零須記好。

  “大”減“小”是指絕對值的大小。

  2、有理數(shù)的減法運算

  減正等于加負,減負等于加正。

  有理數(shù)的乘法運算符號法則。

  同號得正異號負,一項為零積是零。

  3、有理數(shù)混合運算的四種運算技巧

  轉化法:一是將除法轉化為乘法,二是將乘方轉化為乘法,三是在乘除混合運算中,通常將小數(shù)轉化為分數(shù)進行約分計算。

  湊整法:在加減混合運算中,通常將和為零的兩個數(shù),分母相同的兩個數(shù),和為整數(shù)的兩個數(shù),乘積為整數(shù)的兩個數(shù)分別結合為一組求解。

  分拆法:先將帶分數(shù)分拆成一個整數(shù)與一個真分數(shù)的和的形式,然后進行計算。

  巧用運算律:在計算中巧妙運用加法運算律或乘法運算律往往使計算更簡便。

【八年級數(shù)學知識點】相關文章:

數(shù)學八年級知識點提綱08-29

數(shù)學八年級上冊知識點12-07

八年級數(shù)學知識點:分式的運算知識點08-17

八年級數(shù)學的知識點歸納01-26

數(shù)學八年級軸對稱知識點08-10

八年級數(shù)學上冊知識點08-10

八年級數(shù)學知識點歸納12-29

八年級上冊數(shù)學知識點03-15

八年級上冊重要的數(shù)學知識點12-02