av手机免费在线观看,国产女人在线视频,国产xxxx免费,捆绑调教一二三区,97影院最新理论片,色之久久综合,国产精品日韩欧美一区二区三区

數(shù)學(xué) 百文網(wǎng)手機(jī)站

初二數(shù)學(xué)的解題方法有哪些

時間:2021-11-27 10:32:27 數(shù)學(xué) 我要投稿

關(guān)于初二數(shù)學(xué)的解題方法有哪些

  在數(shù)學(xué)解題活動中,掌握解題方法比解決問題更為重要。那么,初二數(shù)學(xué)中的解題方法有哪些呢?下面是小編為你搜集到的相關(guān)內(nèi)容,歡迎閱讀。

關(guān)于初二數(shù)學(xué)的解題方法有哪些

  初二數(shù)學(xué)的解題方法

  1、配方法 。所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數(shù)次冪的和形式。通過配方解決數(shù)學(xué)問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。

  2、因式分解法因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數(shù)等等。

  3、換元法換元法是初中數(shù)學(xué)中一個非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復(fù)雜的數(shù)學(xué)式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。

  4、判別式法與韋達(dá)定理一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運算中都有非常廣泛的應(yīng)用。韋達(dá)定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應(yīng)用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關(guān)二次曲線的問題等,都有非常廣泛的應(yīng)用。

  5、待定系數(shù)法在解數(shù)學(xué)問題時,若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。

  6、構(gòu)造法在解題時,我們常常會采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識互相滲透,有利于問題的解決。

  7、反證法反證法是一種間接證法,它是先提出一個與命題的結(jié)論相反的假設(shè),然后,從這個假設(shè)出發(fā),經(jīng)過正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無源之水,無本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。

  8、面積法平面幾何中講的面積公式以及由面積公式推出的與面積計算有關(guān)的性質(zhì)定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關(guān)系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯(lián)系起來,通過運算達(dá)到求證的結(jié)果。所以用面積法來解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。

  9、幾何變換法在數(shù)學(xué)問題的研究中,常常運用變換法,把復(fù)雜性問題轉(zhuǎn)化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習(xí)題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運動中的研究結(jié)合起來,有利于對圖形本質(zhì)的認(rèn)識。幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對稱。

  初二數(shù)學(xué)學(xué)習(xí)的方法

  初二是數(shù)學(xué)學(xué)習(xí)的分水嶺,很多孩子學(xué)習(xí)數(shù)學(xué)都會感到隨著年級的升高越來越困難,這當(dāng)然和孩子的智能傾向有關(guān),但也和學(xué)習(xí)方法、思考問題方式、學(xué)習(xí)習(xí)慣有關(guān)。無論從年齡增長的心理特征上講,還是從學(xué)習(xí)的不同階段的要求上講都應(yīng)該進(jìn)行良好學(xué)習(xí)習(xí)慣的培養(yǎng)和學(xué)習(xí)方法的指導(dǎo)。

  學(xué)習(xí)習(xí)慣的培養(yǎng)

  習(xí)慣是經(jīng)過重復(fù)練習(xí)而鞏固下來的穩(wěn)重持久的條件反射和自然需要。建立學(xué)習(xí)數(shù)學(xué)的良好習(xí)慣,會使自己學(xué)習(xí)感到有序而輕松。學(xué)習(xí)數(shù)學(xué)的良好習(xí)慣應(yīng)是:多質(zhì)疑、勤動手、重歸納、多復(fù)習(xí)、算準(zhǔn)確、寫規(guī)范。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。

  預(yù)習(xí)、聽課、復(fù)習(xí)、作業(yè)、解題等方面的習(xí)慣養(yǎng)成

  1、預(yù)習(xí)的方法 -----預(yù)習(xí)是上課前對即將要上的數(shù)學(xué)內(nèi)容進(jìn)行閱讀,做到心中有數(shù),以便于掌握聽課的主動權(quán)。這樣有利于提高學(xué)習(xí)能力和養(yǎng)成自學(xué)的習(xí)慣,所以它是數(shù)學(xué)學(xué)習(xí)中的重要一環(huán)。

  (1)看書要動筆。(不動筆墨不讀書)

 、僖话悴捎眠呴喿x、邊思考、邊書寫的方式,把內(nèi)容的要點、層次、聯(lián)系劃出來或打上記號,寫下自己的看法或在弄不懂的地方與問題上做記號;

 、陬A(yù)習(xí)時一旦發(fā)現(xiàn)舊知識掌握得不好,甚至不理解時,就要及時翻書查閱摘抄,采取措施補上,為順利學(xué)習(xí)新內(nèi)容創(chuàng)造條件。

 、哿私獗竟(jié)課的基本內(nèi)容,也就是知道要講些什么,要解決什么問題,采取什么方法,重點關(guān)鍵在哪里等等。

 、芤涯骋槐揪毩(xí)冊所對應(yīng)的章節(jié)拿出來大致看一遍,看哪些題一下能看會,哪些題根本看不懂,然后帶著疑問去聽課。

  (2)確定聽課要點。把握自己要解決的主要問題,以提高聽課的效率。

  2、聽課的方法

  聽課是學(xué)習(xí)數(shù)學(xué)的主要形式。在教師的指導(dǎo)、啟發(fā)、幫助下學(xué)習(xí),就可以少走彎路,減少困難,能在較短的時間內(nèi)獲得大量系統(tǒng)的數(shù)學(xué)知識,否則事倍功半,難以提高效率。所以聽課是學(xué)好數(shù)學(xué)的關(guān)鍵。

  (1)盯住老師。除在預(yù)習(xí)中已明確的任務(wù),做到有針對性地解決符合自己的問題外,還要把自己思維活動緊緊跟上教師的講課,如定理是如何發(fā)現(xiàn)或產(chǎn)生的,證明的思路是怎樣想出來的,中間要攻破哪幾個關(guān)鍵的地方。公式、定理是如何運用的。許多數(shù)學(xué)家都十分強(qiáng)調(diào)“應(yīng)該不只看到書面上,而且還要看到書背后的東西。”

  (2)敢于發(fā)言。聽課時,一方面理解教師講的內(nèi)容,思考或回答教師提出的問題,另一方面還要獨立思考,如有疑問或有新的問題,要勇于提出自己的看法。

  (3)記筆記。聽課時要把老師講課的要點、補充的內(nèi)容與方法記下。

  3、復(fù)習(xí)的方法

  復(fù)習(xí)就是把學(xué)過的數(shù)學(xué)知識再進(jìn)行學(xué)習(xí),以達(dá)到深入理解、融會貫通、精煉概括、牢固掌握的目的。復(fù)習(xí)應(yīng)與聽課緊密銜接、邊閱讀教材邊回憶聽課內(nèi)容或查看課堂筆記,及時解決存在的知識缺陷與疑問。

  (1)復(fù)習(xí)筆記和卷紙。對學(xué)習(xí)的內(nèi)容務(wù)求弄懂,切實理解掌握。不能僅停留在把已學(xué)的知識溫習(xí)記憶一遍的要求上,而要去努力思考新知識是怎樣產(chǎn)生的,是如何展開或得到證明的,其實質(zhì)是什么,應(yīng)用它如何拓展加寬等。要勤于復(fù)習(xí)(知識點、典型題等),經(jīng)?矗磸(fù)看---這就是心理學(xué)上講的.艾賓浩斯遺忘曲線所揭示的道理。建議學(xué)生采用放電影的方法。完成作業(yè)后,把書和筆記合上,回憶課堂上的內(nèi)容,如定律、公式及例題解答思路、方法等,盡量完整的在大腦中重現(xiàn)。再打開課本及筆記進(jìn)行對照,重點復(fù)習(xí)遺漏的知識點。這既鞏固了當(dāng)天上課內(nèi)容,也可查漏補缺。

  (2)適量做題。準(zhǔn)備一個錯題本,記載做過的錯題再次演練。對于自己曾經(jīng)做錯的題目,回想一下為什么會錯、錯在什么地方。自己曾經(jīng)犯錯誤的地方,往往是自己最薄弱的地方,僅有當(dāng)時的訂正是不夠的,還要進(jìn)行適當(dāng)?shù)膹?qiáng)化訓(xùn)練。

  (3)大膽質(zhì)疑,增強(qiáng)學(xué)習(xí)的主動性。要經(jīng)常與同學(xué)研究,或問老師,不要積攢過多問題。更不要把不會做的題完全寄托在課堂上等待老師去講。

  4、作業(yè)的方法

  數(shù)學(xué)學(xué)習(xí)往往是通過做作業(yè),以達(dá)到對知識的鞏固、加深理解和學(xué)會運用,從而形成技能技巧,以及發(fā)展智力與數(shù)學(xué)能力。由于作業(yè)是在復(fù)習(xí)的基礎(chǔ)上獨立完成的,能檢查出對所學(xué)數(shù)學(xué)知識的掌握程度,能考查出能力的水平,發(fā)現(xiàn)存在的問題,困難。當(dāng)做錯的題目較多時,往往標(biāo)志著知識的理解與掌握上存在缺陷或問題,應(yīng)引起警覺,需及早查明原因,予以解決。

  (1)先復(fù)習(xí)后做作業(yè)。在做作業(yè)前需要先復(fù)習(xí),在基本理解與掌握所學(xué)教材的基礎(chǔ)上進(jìn)行,否則事倍功半,花費了時間,得不到應(yīng)有的效果。

  (2)必須獨立完成。培養(yǎng)良好的習(xí)慣,在作業(yè)中要做得整齊、清潔,要注重解題格式。書寫規(guī)范。作業(yè)必須獨立完成。高質(zhì)量的完成作業(yè)可以培養(yǎng)一種獨立思考和解題正確的責(zé)任感。

  (3)短時高效。規(guī)定一個具體時間,在此期間什么除了寫作業(yè),其他都不允許干。思維松散、精力不集中的作業(yè)習(xí)慣,對提高數(shù)學(xué)能力是有害而無益的。

  (4)認(rèn)真核查。準(zhǔn)備一個紅筆,正確的打?qū)μ,不一樣的再做一遍,檢查是自己做的對還是答案對,一些不會的題或叫不準(zhǔn)的題問老師、問同學(xué)。

  5、養(yǎng)成良好的解題習(xí)慣。

  華羅庚先生倡導(dǎo):學(xué)習(xí)數(shù)學(xué)不僅要常練,還要苦練、活練。應(yīng)當(dāng)培養(yǎng)同學(xué)的不怕煩、深入想的本領(lǐng),在運算方面應(yīng)當(dāng)培養(yǎng)同學(xué)具有喜歡算,不怕煩,經(jīng)常練的習(xí)慣。實踐證明:越到關(guān)鍵時候,你所表現(xiàn)的解題習(xí)慣與平時練習(xí)無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養(yǎng)成良好的解題習(xí)慣是非常重要的。

  初二學(xué)生數(shù)學(xué)學(xué)習(xí)上容易存在的問題

  (1)學(xué)習(xí)缺少科學(xué)性。表現(xiàn)在:部分同學(xué)上課不認(rèn)真記筆記,,課后不能及時鞏固、復(fù)習(xí);忙于應(yīng)付作業(yè),對知識不求甚解。

  (2)忽視基礎(chǔ)。表現(xiàn)在:有些“自我感覺良好”的學(xué)生,常輕視基礎(chǔ)知識、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,反而對難題很感興趣,以顯示自己的“水平” ,好高騖遠(yuǎn),重“ 量” 輕“ 質(zhì)”,沒有堅實的基礎(chǔ)和基本功,到考試時取得不了高分;

  (3)忽視作業(yè)或練習(xí)。表現(xiàn)在:缺乏對問題的深入思考,有時練習(xí)冊上的答案由于印刷錯誤,孩子們作業(yè)做完后核對答案時不相信自己的結(jié)論,把自己的答案一劃,把錯誤答案抄上;書寫規(guī)范性差;

【初二數(shù)學(xué)的解題方法有哪些】相關(guān)文章:

數(shù)學(xué)解題方法有哪些06-25

數(shù)學(xué)解題的方法有哪些06-25

高考數(shù)學(xué)解題方法有哪些11-22

考研數(shù)學(xué)有哪些解題方法06-10

數(shù)學(xué)競賽解題方法有哪些06-25

數(shù)學(xué)中考常見的解題方法有哪些09-23

數(shù)學(xué)常用的解題方法有哪些呢06-28

考研數(shù)學(xué)解題必知的方法有哪些06-11

考研數(shù)學(xué)高數(shù)解題有哪些方法11-08