- 相關(guān)推薦
初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)
在平凡的學(xué)習(xí)生活中,大家都背過(guò)不少知識(shí)點(diǎn),肯定對(duì)知識(shí)點(diǎn)非常熟悉吧!知識(shí)點(diǎn)在教育實(shí)踐中,是指對(duì)某一個(gè)知識(shí)的泛稱。為了幫助大家掌握重要知識(shí)點(diǎn),以下是小編收集整理的初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn),僅供參考,大家一起來(lái)看看吧。
初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)1
1.常量和變量
在某變化過(guò)程中可以取不同數(shù)值的量,叫做變量.在某變化過(guò)程中保持同一數(shù)值的量或數(shù),叫常量或常數(shù).
2.函數(shù)
設(shè)在一個(gè)變化過(guò)程中有兩個(gè)變量x與y,如果對(duì)于x在某一范圍的每一個(gè)值,y都有唯一的值與它對(duì)應(yīng),那么就說(shuō)x是自變量,y是x的函數(shù).
3.自變量的取值范圍
(1)整式:自變量取一切實(shí)數(shù).(2)分式:分母不為零.
(3)偶次方根:被開(kāi)方數(shù)為非負(fù)數(shù).
(4)零指數(shù)與負(fù)整數(shù)指數(shù)冪:底數(shù)不為零.
4.函數(shù)值
對(duì)于自變量在取值范圍內(nèi)的一個(gè)確定的值,如當(dāng)x=a時(shí),函數(shù)有唯一確定的對(duì)應(yīng)值,這個(gè)對(duì)應(yīng)值,叫做x=a時(shí)的函數(shù)值.
5.函數(shù)的表示法
(1)解析法;(2)列表法;(3)圖象法.
6.函數(shù)的圖象
把自變量x的一個(gè)值和函數(shù)y的對(duì)應(yīng)值分別作為點(diǎn)的橫坐標(biāo)和縱坐標(biāo),可以在平面直角坐標(biāo)系內(nèi)描出一個(gè)點(diǎn),所有這些點(diǎn)的集合,叫做這個(gè)函數(shù)的圖象.由函數(shù)解析式畫(huà)函數(shù)圖象的步驟:
(1)寫(xiě)出函數(shù)解析式及自變量的取值范圍;
(2)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值;
(3)描點(diǎn):以表中對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn);
(4)連線:用平滑曲線,按照自變量由小到大的順序,把所描各點(diǎn)連接起來(lái).
7.一次函數(shù)
(1)一次函數(shù)
如果y=kx+b(k、b是常數(shù),k≠0),那么y叫做x的一次函數(shù).
特別地,當(dāng)b=0時(shí),一次函數(shù)y=kx+b成為y=kx(k是常數(shù),k≠0),這時(shí),y叫做x的正比例函數(shù).
(2)一次函數(shù)的圖象
一次函數(shù)y=kx+b的圖象是一條經(jīng)過(guò)(0,b)點(diǎn)和點(diǎn)的直線.特別地,正比例函數(shù)圖象是一條經(jīng)過(guò)原點(diǎn)的直線.需要說(shuō)明的是,在平面直角坐標(biāo)系中,“直線”并不等價(jià)于“一次函數(shù)y=kx+b(k≠0)的圖象”,因?yàn)檫有直線y=m(此時(shí)k=0)和直線x=n(此時(shí)k不存在),它們不是一次函數(shù)圖象.
(3)一次函數(shù)的性質(zhì)
當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減。本y=kx+b與y軸的交點(diǎn)坐標(biāo)為(0,b),與x軸的交點(diǎn)坐標(biāo)為.
(4)用函數(shù)觀點(diǎn)看方程(組)與不等式
①任何一元一次方程都可以轉(zhuǎn)化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:一次函數(shù)y=kx+b(k,b為常數(shù),k≠0),當(dāng)y=0時(shí),求相應(yīng)的自變量的值,從圖象上看,相當(dāng)于已知直線y=kx+b,確定它與x軸交點(diǎn)的橫坐標(biāo).
、诙淮畏匠探M對(duì)應(yīng)兩個(gè)一次函數(shù),于是也對(duì)應(yīng)兩條直線,從“數(shù)”的角度看,解方程組相當(dāng)于考慮自變量為何值時(shí)兩個(gè)函數(shù)值相等,以及這兩個(gè)函數(shù)值是何值;從“形”的角度看,解方程組相當(dāng)于確定兩條直線的交點(diǎn)的坐標(biāo).
、廴魏我辉淮尾坏仁蕉伎梢赞D(zhuǎn)化ax+b>0或ax+b<0(a、b為常數(shù),a≠0)的形式,解一元一次不等式可以看做:當(dāng)一次函數(shù)值大于0或小于0時(shí),求自變量相應(yīng)的取值范圍.
8.反比例函數(shù)(1)反比例函數(shù)
。1)如果(k是常數(shù),k≠0),那么y叫做x的反比例函數(shù).
(2)反比例函數(shù)的圖象反比例函數(shù)的圖象是雙曲線.
(3)反比例函數(shù)的性質(zhì)
、佼(dāng)k>0時(shí),圖象的兩個(gè)分支分別在第一、三象限內(nèi),在各自的.象限內(nèi),y隨x的增大而減。
、诋(dāng)k<0時(shí),圖象的兩個(gè)分支分別在第二、四象限內(nèi),在各自的象限內(nèi),y隨x的增大而增大.
③反比例函數(shù)圖象關(guān)于直線y=±x對(duì)稱,關(guān)于原點(diǎn)對(duì)稱.
(4)k的兩種求法
①若點(diǎn)(x0,y0)在雙曲線上,則k=x0y0.②k的幾何意義:
若雙曲線上任一點(diǎn)A(x,y),AB⊥x軸于B,則S△AOB
(5)正比例函數(shù)和反比例函數(shù)的交點(diǎn)問(wèn)題
若正比例函數(shù)y=k1x(k1≠0),反比例函數(shù),則當(dāng)k1k2<0時(shí),兩函數(shù)圖象無(wú)交點(diǎn);
當(dāng)k1k2>0時(shí),兩函數(shù)圖象有兩個(gè)交點(diǎn),坐標(biāo)分別為由此可知,正反比例函數(shù)的圖象若有交點(diǎn),兩交點(diǎn)一定關(guān)于原點(diǎn)對(duì)稱.
1.二次函數(shù)
如果y=ax2+bx+c(a,b,c為常數(shù),a≠0),那么y叫做x的二次函數(shù).
幾種特殊的二次函數(shù):y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h(huán))2(a≠0).
2.二次函數(shù)的圖象
二次函數(shù)y=ax2+bx+c的圖象是對(duì)稱軸平行于y軸的一條拋物線.由y=ax2(a≠0)的圖象,通過(guò)平移可得到y(tǒng)=a(x-h(huán))2+k(a≠0)的圖象.
3.二次函數(shù)的性質(zhì)
二次函數(shù)y=ax2+bx+c的性質(zhì)對(duì)應(yīng)在它的圖象上,有如下性質(zhì):
(1)拋物線y=ax2+bx+c的頂點(diǎn)是,對(duì)稱軸是直線,頂點(diǎn)必在對(duì)稱軸上;
(2)若a>0,拋物線y=ax2+bx+c的開(kāi)口向上,因此,對(duì)于拋物線上的任意一點(diǎn)(x,y),當(dāng)x<時(shí),y隨x的增大而減;當(dāng)x>時(shí),y隨x的增大而增大;當(dāng)x=,y有最小值;若a<0,拋物線y=ax2+bx+c的開(kāi)口向下,因此,對(duì)于拋物線上的任意一點(diǎn)(x,y),當(dāng)x<,y隨x的增大而增大;當(dāng)時(shí),y隨x的增大而減;當(dāng)x=時(shí),y有最大值;
(3)拋物線y=ax2+bx+c與y軸的交點(diǎn)為(0,c);
(4)在二次函數(shù)y=ax2+bx+c中,令y=0可得到拋物線y=ax2+bx+c與x軸交點(diǎn)的情況:
。0時(shí),拋物線y=ax2+bx+c與x軸沒(méi)有公共點(diǎn).=0時(shí),拋物線y=ax2+bx+c與x軸只有一個(gè)公共點(diǎn),即為此拋物線的頂點(diǎn);當(dāng)=b2-4ac>0,拋物線y=ax2+bx+c與x軸有兩個(gè)不同的公共點(diǎn),它們的坐標(biāo)分別是和,這兩點(diǎn)的距離為;當(dāng)當(dāng)4.拋物線的平移
拋物線y=a(x-h(huán))2+k與y=ax2形狀相同,位置不同.把拋物線y=ax2向上(下)、向左(右)平移,可以得到拋物線y=a(x-h(huán))2+k.平移的方向、距離要根據(jù)h、k的值來(lái)決定.
初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)2
關(guān)于初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)
上加下減,左加右減
y=a(x+b)2+c,是將y=ax2的二次函數(shù)圖像按以下規(guī)律平移
(1)c>0時(shí),圖像向上平移c個(gè)單位(上加上)。
。2)c<0時(shí),圖像向下平移c個(gè)單位(下減)。
(3)b>0時(shí),圖像向左平移b個(gè)單位(左加)。
(4)b<0時(shí),圖像向右平移b個(gè)單位(右減)。
二次函數(shù)(以下稱函數(shù))y=ax2+bx+c。
當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),即ax2+bx+c=0。
此時(shí),函數(shù)圖像與x軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數(shù)根。函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。
1、二次函數(shù)y=ax2,y=a(x—h)2,y=a(x—h)2+k,y=ax2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同。當(dāng)h>0時(shí),y=a(x—h)2的圖象可由拋物線y=ax2向右平行移動(dòng)h個(gè)單位得到。
當(dāng)h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到。
當(dāng)h>0,k>0時(shí),將拋物線y=ax2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x—h)2+k的圖象。
當(dāng)h>0,k<0時(shí),將拋物線y=ax2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x—h)2+k的圖象。
當(dāng)h<0,k>0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x—h)2+k的圖象。
當(dāng)h<0,k<0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x—h)2+k的.圖象。
因此,研究拋物線y=ax2+bx+c(a≠0)的圖象,通過(guò)配方,將一般式化為y=a(x—h)2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了、這給畫(huà)圖象提供了方便。
2、拋物線y=ax2+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開(kāi)口向上,當(dāng)a<0時(shí)開(kāi)口向下,對(duì)稱軸是直線x=—b/2a,頂點(diǎn)坐標(biāo)是(—b/2a,[4ac—b2]/4a)。
3、拋物線y=ax2+bx+c(a≠0),若a>0,當(dāng)x≤—b/2a時(shí),y隨x的增大而減;當(dāng)x≥—b/2a時(shí),y隨x的增大而增大、若a<0,當(dāng)x≤—b/2a時(shí),y隨x的增大而增大;當(dāng)x≥—b/2a時(shí),y隨x的增大而減小。
4、拋物線y=ax2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):
。1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c)。
。2)當(dāng)△=b^2—4ac>0,圖象與x軸交于兩點(diǎn)A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根、這兩點(diǎn)間的距離AB=|x?—x?|。
當(dāng)△=0、圖象與x軸只有一個(gè)交點(diǎn);當(dāng)△<0、圖象與x軸沒(méi)有交點(diǎn)、當(dāng)a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y<0。
5、拋物線y=ax2+bx+c的最值:如果a>0(a<0),則當(dāng)x=—b/2a時(shí),y最。ù螅┲=(4ac—b2)/4a。
頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值。
初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)3
一次函數(shù)與一元一次方程的關(guān)系
一元一次方程ax+b=0(a,b為常數(shù),且a≠0)可看作一次函數(shù)y=ax+b的函數(shù)值是0的一種特例,其解是直線y=ax+b與x軸交點(diǎn)的橫坐標(biāo),所以解一元一次方程ax+b=0可以轉(zhuǎn)化為當(dāng)一次函數(shù)y=ax+b的值為0時(shí),求相應(yīng)自變量x的值,因此可以利用圖像來(lái)解一元一次方程。
求直線y=kx+b與x軸交點(diǎn)時(shí),可令y=0,得到一元一次方程kx+b=0,解方程得x=-,則- 就是直線y=kx+b與x軸交點(diǎn)的`橫坐標(biāo)。
反過(guò)來(lái)解一元一次方程也可以看作是求直線y=kx+b與x軸交點(diǎn)的橫坐標(biāo)的值。
待定系數(shù)法
先設(shè)出函數(shù)解析式,在根據(jù)條件確定解析式中的未知的系數(shù),從而寫(xiě)出這個(gè)式子的方法,叫待定系數(shù)法。
用待定系數(shù)法確定解析式的步驟:
①設(shè)函數(shù)表達(dá)式為:y=kx 或 y=kx+b
、趯⒁阎c(diǎn)的坐標(biāo)代入函數(shù)表達(dá)式,得到方程(組)
③解方程或組,求出待定的系數(shù)的值。
、馨训闹荡厮O(shè)表達(dá)式,從而寫(xiě)出需要的解析式。
注意; 正比例函數(shù)y=kx只要有一個(gè)條件就可以。而一次函數(shù)y=kx+b需要有兩個(gè)條件。
性質(zhì)
①圖像形:是一條直線。稱為直線y=kx+b
②象限性:
當(dāng)k>0、b>0時(shí),直線經(jīng)過(guò)第一、二、三象限,不過(guò)四象限。
當(dāng)k>0、b<0時(shí),直線經(jīng)過(guò)第一、三、四象限。不過(guò)二象限
當(dāng)k<0 b="">0時(shí),直線經(jīng)過(guò)第一、二,四象限。不過(guò)三象限
當(dāng)h<0,k<0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;
因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過(guò)配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了。這給畫(huà)圖象提供了方便。
2、拋物線y=ax^2+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開(kāi)口向上,當(dāng)a<0時(shí)開(kāi)口向下,對(duì)稱軸是直線x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b^2]/4a)。
3、拋物線y=ax^2+bx+c(a≠0),若a>0,當(dāng)x≤-b/2a時(shí),y隨x的增大而減小;當(dāng)x≥-b/2a時(shí),y隨x的增大而增大。若a<0,當(dāng)x≤-b/2a時(shí),y隨x的增大而增大;當(dāng)x≥-b/2a時(shí),y隨x的增大而減小。
4、拋物線y=ax^2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):
(1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);
(2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的兩根。這兩點(diǎn)間的距離AB=|x-x|
當(dāng)△=0。圖象與x軸只有一個(gè)交點(diǎn);
當(dāng)△<0。圖象與x軸沒(méi)有交點(diǎn)。當(dāng)a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y<0。
5、拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當(dāng)x=-b/2a時(shí),y最小(大)值=(4ac-b^2)/4a。
頂點(diǎn)的`橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值。
6、用待定系數(shù)法求二次函數(shù)的解析式
(1)當(dāng)題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:
y=ax^2+bx+c(a≠0)。
(2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)^2+k(a≠0)。
(3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x)(x-x)(a≠0)。
7、二次函數(shù)知識(shí)很容易與其它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn)。
如何整理數(shù)學(xué)學(xué)科課堂筆記
一、內(nèi)容提綱。老師講課大多有提綱,并且講課時(shí)老師會(huì)將一堂課的線索脈絡(luò)、重點(diǎn)難點(diǎn)等,簡(jiǎn)明清晰地呈現(xiàn)在黑板上。同時(shí),教師會(huì)使之富有條理性和直觀性。記下這些內(nèi)容提綱,便于課后復(fù)習(xí)回顧,整體把握知識(shí)框架,對(duì)所學(xué)知識(shí)做到胸有成竹、清晰完整。
二、疑難問(wèn)題。將課堂上未聽(tīng)懂的問(wèn)題及時(shí)記下來(lái),便于課后請(qǐng)教同學(xué)或老師,把問(wèn)題弄懂弄通。教師在組織課堂教學(xué)時(shí),受到時(shí)空的限制,不可能做到顧及每一位同學(xué)。相應(yīng)的,一些問(wèn)題對(duì)部分學(xué)生來(lái)說(shuō),是屬于疑難問(wèn)題,由于課堂上來(lái)不及思考成熟,記下疑難問(wèn)題,可在課后繼續(xù)加以思考和探究,加以理解和掌握,不致出現(xiàn)知識(shí)的斷層、方法的缺陷。
三、思路方法。對(duì)老師在課堂上介紹的解題方法和分析思路也應(yīng)及時(shí)記下,課后加以消化,若有疑惑,先作獨(dú)立分析,因?yàn)橛锌赡苁亲约豪斫忮e(cuò)誤造成的,也有可能是老師講課疏忽造成的,記下來(lái)后,便于課后及時(shí)與老師商榷和探討。勤記老師講的解題技巧、思路及方法,這對(duì)于啟迪思維,開(kāi)闊視野,開(kāi)發(fā)智力,培養(yǎng)能力,并對(duì)提高解題水平大有益處。在這基礎(chǔ)上,若能主動(dòng)鉆研,另辟蹊徑,則更難能可貴。
四、歸納總結(jié)。注意記下老師的課后總結(jié),這對(duì)于濃縮一堂課的內(nèi)容,找出重點(diǎn)及各部分之間的聯(lián)系,掌握基本概念、公式、定理,尋找規(guī)律,融會(huì)貫通課堂內(nèi)容都很有作用。同時(shí),很多有經(jīng)驗(yàn)的老師在課后小結(jié)時(shí),一方面是承上歸納所學(xué)內(nèi)容,另一方面又是啟下布置預(yù)習(xí)任務(wù)或點(diǎn)明后面所要學(xué)的內(nèi)容,做好筆記可以把握學(xué)習(xí)的主動(dòng)權(quán),提前作準(zhǔn)備,做到目標(biāo)任務(wù)明確。
五、錯(cuò)誤反思。學(xué)習(xí)過(guò)程中不可避免地會(huì)犯這樣或那樣的錯(cuò)誤,記下自己所犯的錯(cuò)誤,并用紅筆醒目地加以標(biāo)注,以警示自己,同時(shí)也應(yīng)注明錯(cuò)誤成因,正確思路及方法,在反思中成熟,在反思中提高。
數(shù)學(xué)常用解題技巧有哪些
第一,應(yīng)堅(jiān)持由易到難的做題順序。近年來(lái)高考數(shù)學(xué)試題的設(shè)置是8道選擇題、6道填空題、6到大題,通常稱為866結(jié)構(gòu)。在實(shí)體設(shè)置的結(jié)構(gòu)中有三個(gè)小高峰,選擇題是由易到難,最難的題是第8題。填空題同樣是這樣設(shè)置的。也是第9題容易到第14題最難,大題從第15題到第20題,它們的設(shè)置也是這樣的。根據(jù)這樣的試題結(jié)構(gòu),應(yīng)先做前面容易的,基礎(chǔ)好一點(diǎn)的考生就先做前7個(gè)選擇,前5個(gè)填空、前5個(gè)大題,稱為是755結(jié)構(gòu);A(chǔ)差的就是644,先把自己能做的、會(huì)做的拿到手。這是第一點(diǎn)。
第二,審題是關(guān)鍵。把題給看清楚了再動(dòng)筆答題,看清楚題以后問(wèn)什么、已知什么、讓你做什么,把這些問(wèn)題搞清楚了,自己制訂了一個(gè)完整的解題策略,在開(kāi)始寫(xiě)的時(shí)候,這個(gè)時(shí)候是很快就可以完成的。
第三,屬于非智力因素導(dǎo)致想不起來(lái)。本來(lái)是很簡(jiǎn)單的題比如說(shuō)是做到第三題、第四題的時(shí)候不是難題,但想不起來(lái)了,卡住了,這時(shí)候怎么辦?雖然是簡(jiǎn)單題卻不會(huì)做怎么辦?應(yīng)先跳過(guò)去,不是這道題不會(huì)做嗎?后面還有很多的簡(jiǎn)單題呢,把后面的題做一做,不要在考場(chǎng)上愣神,先跳過(guò)去做其他的題,等穩(wěn)定下來(lái)以后再回過(guò)頭來(lái)看會(huì)頓悟,豁然開(kāi)朗。
第四,做選擇題的時(shí)候應(yīng)運(yùn)用最好的解題方法。因?yàn)檫x擇題和填空題都是看結(jié)果不看過(guò)程,因此在這個(gè)過(guò)程中都應(yīng)不擇手段,只要是能把正確的結(jié)論找到就行?忌S玫姆椒ㄊ侵苯臃ǎ瑥囊阎拈_(kāi)始也不看它的四個(gè)選項(xiàng),從頭到尾寫(xiě)完了之后一看答案就寫(xiě)上去了。另外就是特質(zhì)法(音),一些出現(xiàn)字母、特別是不等式,這時(shí)候給它賦一個(gè)值,代進(jìn)去這時(shí)候速度會(huì)比較快,正確地找出結(jié)果來(lái)。再就是數(shù)形結(jié)合法。最后實(shí)在不行了,就將四個(gè)選項(xiàng)代入驗(yàn)證,看看哪個(gè)符合就是哪個(gè)了。填空題用上述的直接法、特質(zhì)法、數(shù)形結(jié)合法三種方法都適合。做大題的時(shí)候要特別注意解題步驟,規(guī)范答題可以減少失分。簡(jiǎn)單地說(shuō),規(guī)范答題就是從上一步的原因到下一步的結(jié)論,這是一個(gè)必然的過(guò)程,讓誰(shuí)寫(xiě)、誰(shuí)看都是這樣的。因?yàn)槭裁此允裁词且粋(gè)必然的過(guò)程,這是規(guī)范答題。
學(xué)霸分享的數(shù)學(xué)復(fù)習(xí)技巧
1、把答案蓋住看例題
例題不能帶著答案去看,不然會(huì)認(rèn)為自己就是這么,其實(shí)自己并沒(méi)有理解透徹。
所以,在看例題時(shí),把解答蓋住,自己去做,做完或做不出時(shí)再去看。這時(shí)要想一想,自己做的哪里與解答不同,哪里沒(méi)想到,該注意什么,哪一種方法更好,還有沒(méi)有另外的解法。
經(jīng)過(guò)上面的訓(xùn)練,自己的思維空間擴(kuò)展了,看問(wèn)題也全面了。如果把題目徹底搞清了,在題后精煉幾個(gè)批注,說(shuō)明此題的“題眼”及巧妙之處,收獲會(huì)更大。
2、研究每題都考什么
數(shù)學(xué)能力的提高離不開(kāi)做題,“熟能生巧”這個(gè)簡(jiǎn)單的道理大家都懂。但做題不是搞題海戰(zhàn)術(shù),而是要通過(guò)一題聯(lián)想到很多題。
3、錯(cuò)一次反思一次
每次業(yè)及考試或多或少會(huì)發(fā)生些錯(cuò)誤,這并不可怕,要緊的是避免類似的錯(cuò)誤再次重現(xiàn)。因此平時(shí)注意把錯(cuò)題記下來(lái)。
學(xué)生若能將每次考試或練習(xí)中出現(xiàn)的錯(cuò)誤記錄下來(lái)分析,并盡力保證在下次考試時(shí)不發(fā)生同樣錯(cuò)誤,那么以后人生中最重要的高考也就能避免犯錯(cuò)了.
4、分析試卷總結(jié)經(jīng)驗(yàn)
每次考試結(jié)束試卷發(fā)下來(lái),要認(rèn)真分析得失,總結(jié)經(jīng)驗(yàn)教訓(xùn)。特別是將試卷中出現(xiàn)的錯(cuò)誤進(jìn)行分類。
初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)7
k0時(shí),y隨x的增大而減小,直線一定過(guò)二、四象限(3)若直線l1:yk1xb1l2:yk2xb2
當(dāng)k1k2時(shí),l1//l2;當(dāng)b1b2b時(shí),l1與l2交于(0,b)點(diǎn)。
(4)當(dāng)b>0時(shí)直線與y軸交于原點(diǎn)上方;當(dāng)b學(xué)大教育
(1)是中心對(duì)稱圖形,對(duì)中稱心是原點(diǎn)(2)對(duì)稱性:是軸直線yx和yx(2)是軸對(duì)稱圖形,對(duì)稱k0時(shí)兩支曲線分別位于一、三象限且每一象限內(nèi)y隨x的增大而減。3)
k0時(shí)兩支曲線分別位于二、四象限且每一象限內(nèi)y隨x的增大而增大(4)過(guò)圖象上任一點(diǎn)作x軸與y軸的垂線與坐標(biāo)軸構(gòu)成的矩形面積為|k|。
P(1)應(yīng)用在u3.應(yīng)用(2)應(yīng)用在(3)其它F上SS上t其要點(diǎn)是會(huì)進(jìn)行“數(shù)結(jié)形合”來(lái)解決問(wèn)題二、二次函數(shù)
1.定義:應(yīng)注意的問(wèn)題
(1)在表達(dá)式y(tǒng)=ax2+bx+c中(a、b、c為常數(shù)且a≠0)(2)二次項(xiàng)指數(shù)一定為22.圖象:拋物線
3.圖象的性質(zhì):分五種情況可用表格來(lái)說(shuō)明表達(dá)式(1)y=ax2頂點(diǎn)坐標(biāo)對(duì)稱軸(0,0)最大(小)值y最小=0y最大=0(2)y=ax2+c(0,0)y最小=0y最大=0(3)y=a(x-(h,0)h)2直線x=hy最小=0y最大=0y隨x的變化情況隨x增大而增大隨x增大而減小隨x的增大而增大隨x的增大而減小隨x的增大而增大隨x的增大而減小直線x=0(y軸)①若a>0,則x=0時(shí),若a>0,則x>0時(shí),y②若a0,則x=0時(shí),①若a>0,則x>0時(shí),y②若a0,則x=h時(shí),①若a>0,則x>h時(shí),y②若a學(xué)大教育
表達(dá)式h)2+k頂點(diǎn)坐標(biāo)對(duì)稱軸直線x=h最大(小)值y最小=ky最大=k(5)y=ax2+b(x+cb2ay隨x的變化情況隨x的增大而增大隨x的增大而減小b2a時(shí),①若a>0,則x>b2a(4)y=a(x-(h,k)①若a>0,則x=h時(shí),①若a>0,則x>h時(shí),y②若a0,則x=4acb24ay最小=4acb24ab時(shí),y隨x的增大而增大時(shí),②若a2a2a時(shí),y隨x的增大而減小b②若a學(xué)大教育
一次函數(shù)圖象和性質(zhì)
【知識(shí)梳理】
1.正比例函數(shù)的一般形式是y=kx(k≠0),一次函數(shù)的一般形式是y=kx+b(k≠0).2.一次函數(shù)ykxb的圖象是經(jīng)過(guò)(3.一次函數(shù)ykxb的圖象與性質(zhì)
圖像的大致位置經(jīng)過(guò)象限第象限第象限第象限第象限y隨x的增大y隨x的增大而y隨x的增大y隨x的增大性質(zhì)而而而而
【思想方法】數(shù)形結(jié)合
k、b的符號(hào)k>0,b>0k>0,b<0k<0,b>0k<0,b<0b,0)和(0,b)兩點(diǎn)的`一條直線.k反比例函數(shù)圖象和性質(zhì)
【知識(shí)梳理】
1.反比例函數(shù):一般地,如果兩個(gè)變量x、y之間的關(guān)系可以表示成y=或(k為常數(shù),k≠0)的形式,那么稱y是x的反比例函數(shù).2.反比例函數(shù)的圖象和性質(zhì)
k的符號(hào)k>0yoxk<0yox
圖像的大致位置經(jīng)過(guò)象限性質(zhì)
第象限在每一象限內(nèi),y隨x的增大而第象限在每一象限內(nèi),y隨x的增大而3.k的幾何含義:反比例函數(shù)y=的幾何意義,即過(guò)雙曲線y=
k(k≠0)中比例系數(shù)kxk(k≠0)上任意一點(diǎn)P作x4
x軸、y軸垂線,設(shè)垂足分別為A、B,則所得矩形OAPB
函數(shù)學(xué)習(xí)方法學(xué)大教育
的面積為.
【思想方法】數(shù)形結(jié)合
二次函數(shù)圖象和性質(zhì)
【知識(shí)梳理】
1.二次函數(shù)ya(xh)2k的圖像和性質(zhì)
圖象開(kāi)口對(duì)稱軸頂點(diǎn)坐標(biāo)最值增減性
在對(duì)稱軸左側(cè)在對(duì)稱軸右側(cè)當(dāng)x=時(shí),y有最值y隨x的增大而y隨x的增大而a>0yOa<0x當(dāng)x=時(shí),y有最值y隨x的增大而y隨x的增大而銳角三角函數(shù)
【思想方法】
1.常用解題方法設(shè)k法2.常用基本圖形雙直角
【例題精講】例題1.在△ABC中,∠C=90°.(1)若cosA=
14,則tanB=______;(2)若cosA=,則tanB=______.255
函數(shù)學(xué)習(xí)方法學(xué)大教育
例題2.(1)已知:cosα=
23,則銳角α的取值范圍是()A.0°
初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)8
二次函數(shù)基本知識(shí)點(diǎn)
I.定義與定義表達(dá)式
一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c
(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a
二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。
II.二次函數(shù)的三種表達(dá)式
一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)
頂點(diǎn)式:y=a(x-h)^2+k[拋物線的頂點(diǎn)P(h,k)]
交點(diǎn)式:y=a(x-x)(x-x)[僅限于與x軸有交點(diǎn)A(x,0)和B(x,0)的拋物線]
注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:
h=-b/2ak=(4ac-b^2)/4ax,x=(-b±√b^2-4ac)/2a
拋物線的`性質(zhì)
1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線
x=-b/2a。
對(duì)稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。
特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)
2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為
P[-b/2a,(4ac-b^2;)/4a]。
當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在x軸上。
3.二次項(xiàng)系數(shù)a決定拋物線的開(kāi)口方向和大小。
當(dāng)a>0時(shí),拋物線向上開(kāi)口;當(dāng)a<0時(shí),拋物線向下開(kāi)口。
|a|越大,則拋物線的開(kāi)口越小。
4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。
當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;
當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。
二次函數(shù)的三種表達(dá)式
、僖话闶剑簓=ax^2+bx+c(a,b,c為常數(shù),a≠0)
、陧旤c(diǎn)式[拋物線的頂點(diǎn)P(h,k)]:y=a(x-h)^2+k
、劢稽c(diǎn)式[僅限于與x軸有交點(diǎn)A(x1,0)和B(x2,0)的拋物線]:y=a(x-x1)(x-x2)
以上3種形式可進(jìn)行如下轉(zhuǎn)化:
、僖话闶胶晚旤c(diǎn)式的關(guān)系
對(duì)于二次函數(shù)y=ax^2+bx+c,其頂點(diǎn)坐標(biāo)為(-b/2a,(4ac-b^2)/4a),即
h=-b/2a=(x1+x2)/2
k=(4ac-b^2)/4a
②一般式和交點(diǎn)式的關(guān)系
x1,x2=[-b±√(b^2-4ac)]/2a(即一元二次方程求根公式)
初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)9
誘導(dǎo)公式的本質(zhì)
所謂三角函數(shù)誘導(dǎo)公式,就是將角n(/2)的三角函數(shù)轉(zhuǎn)化為角的三角函數(shù)。
常用的誘導(dǎo)公式
公式一: 設(shè)為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(2k)=sin kz
cos(2k)=cos kz
tan(2k)=tan kz
cot(2k)=cot kz
公式二: 設(shè)為任意角,的三角函數(shù)值與的三角函數(shù)值之間的關(guān)系:
sin()=-sin
cos()=-cos
tan()=tan
cot()=cot
公式三: 任意角與 -的三角函數(shù)值之間的'關(guān)系:
sin(-)=-sin
cos(-)=cos
tan(-)=-tan
cot(-)=-cot
公式四: 利用公式二和公式三可以得到與的三角函數(shù)值之間的關(guān)系:
sin()=sin
cos()=-cos
tan()=-tan
cot()=-cot
初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)10
∴當(dāng)x1時(shí)函數(shù)取得最大值,且ymax(1)2(1)13例4、已知函數(shù)f(x)x22(a1)x2
4],求實(shí)數(shù)a的取值(1)若函數(shù)f(x)的遞減區(qū)間是(,4]上是減函數(shù),求實(shí)數(shù)a的取值范圍(2)若函數(shù)f(x)在區(qū)間(,分析:二次函數(shù)的單調(diào)區(qū)間是由其開(kāi)口方向及對(duì)稱軸決定的,要分清函數(shù)在區(qū)間A上是單調(diào)函數(shù)及單調(diào)區(qū)間是A的區(qū)別與聯(lián)系
解:(1)f(x)的對(duì)稱軸是x可得函數(shù)圖像開(kāi)口向上
2(a1)21a,且二次項(xiàng)系數(shù)為1>0
1a]∴f(x)的單調(diào)減區(qū)間為(,∴依題設(shè)條件可得1a4,解得a3
4]上是減函數(shù)(2)∵f(x)在區(qū)間(,4]是遞減區(qū)間(,1a]的'子區(qū)間∴(,∴1a4,解得a3
例5、函數(shù)f(x)x2bx2,滿足:f(3x)f(3x)
。1)求方程f(x)0的兩根x1,x2的和(2)比較f(1)、f(1)、f(4)的大小解:由f(3x)f(3x)知函數(shù)圖像的對(duì)稱軸為x(3x)(3x)23
b3可得b62f(x)x26x2(x3)211
而f(x)的圖像與x軸交點(diǎn)(x1,0)、(x2,0)關(guān)于對(duì)稱軸x3對(duì)稱
x1x223,可得x1x26
第三章第32頁(yè)由二次項(xiàng)系數(shù)為1>0,可知拋物線開(kāi)口向上又134,132,431
∴依二次函數(shù)的對(duì)稱性及單調(diào)性可f(4)f(1)f(1)(III)課后作業(yè)練習(xí)六
。á簦┙虒W(xué)后記:
第三章第33頁(yè)
擴(kuò)展閱讀:初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)歸納
學(xué)大教育
初中數(shù)學(xué)函數(shù)板塊的知識(shí)點(diǎn)總結(jié)與歸類學(xué)習(xí)方法
初中數(shù)學(xué)知識(shí)大綱中,函數(shù)知識(shí)占了很大的知識(shí)體系比例,學(xué)好了函數(shù),掌握了函數(shù)的基本性質(zhì)及其應(yīng)用,真正精通了函數(shù)的每一個(gè)模塊知識(shí),會(huì)做每一類函數(shù)題型,就讀于中考中數(shù)學(xué)成功了一大半,數(shù)學(xué)成績(jī)自然上高峰,同時(shí),函數(shù)的思想是學(xué)好其他理科類學(xué)科的基礎(chǔ)。初中數(shù)學(xué)從性質(zhì)上分,可以分為:一次函數(shù)、反比例函數(shù)、二次函數(shù)和銳角三角函數(shù),下面介紹各類函數(shù)的定義、基本性質(zhì)、函數(shù)圖象及函數(shù)應(yīng)用思維方式方法。
一、一次函數(shù)
1.定義:在定義中應(yīng)注意的問(wèn)題y=kx+b中,k、b為常數(shù),且k≠0,x的指數(shù)一定為1。2.圖象及其性質(zhì)(1)形狀、直線
初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)11
一次函數(shù):一次函數(shù)圖像與性質(zhì)是中考必考的內(nèi)容之一。中考試題中分值約為10分左右題型多樣,形式靈活,綜合應(yīng)用性強(qiáng)。甚至有存在探究題目出現(xiàn)。
主要考察內(nèi)容:
、贂(huì)畫(huà)一次函數(shù)的圖像,并掌握其性質(zhì)。
、跁(huì)根據(jù)已知條件,利用待定系數(shù)法確定一次函數(shù)的解析式。
、勰苡靡淮魏瘮(shù)解決實(shí)際問(wèn)題。
、芸疾煲籭c函數(shù)與二元一次方程組,一元一次不等式的關(guān)系。
突破方法:
、僬_理解掌握一次函數(shù)的概念,圖像和性質(zhì)。
②運(yùn)用數(shù)學(xué)結(jié)合的思想解與一次函數(shù)圖像有關(guān)的問(wèn)題。
、壅莆沼么ㄏ禂(shù)法球一次函數(shù)解析式。
、茏鲆恍┚C合題的訓(xùn)練,提高分析問(wèn)題的能力。
函數(shù)性質(zhì):
1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k.即:y=kx+b(k,b為常數(shù),k≠0),∵當(dāng)x增加m,k(x+m)+b=y+km,km/m=k。
2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的點(diǎn),坐標(biāo)為(0,b)。
3當(dāng)b=0時(shí)(即y=kx),一次函數(shù)圖像變?yōu)檎壤瘮?shù),正比例函數(shù)是特殊的一次函數(shù)。
4.在兩個(gè)一次函數(shù)表達(dá)式中:
當(dāng)兩一次函數(shù)表達(dá)式中的k相同,b也相同時(shí),兩一次函數(shù)圖像重合;當(dāng)兩一次函數(shù)表達(dá)式中的k相同,b不相同時(shí),兩一次函數(shù)圖像平行;當(dāng)兩一次函數(shù)表達(dá)式中的k不相同,b不相同時(shí),兩一次函數(shù)圖像相交;當(dāng)兩一次函數(shù)表達(dá)式中的k不相同,b相同時(shí),兩一次函數(shù)圖像交于y軸上的同一點(diǎn)(0,b)。若兩個(gè)變量x,y間的關(guān)系式可以表示成Y=KX+b(k,b為常數(shù),k不等于0)則稱y是x的一次函數(shù)圖像性質(zhì)
1、作法與圖形:通過(guò)如下3個(gè)步驟:
。1)列表.
。2)描點(diǎn);[一般取兩個(gè)點(diǎn),根據(jù)“兩點(diǎn)確定一條直線”的道理,也可叫“兩點(diǎn)法”。一般的y=kx+b(k≠0)的圖象過(guò)(0,b)和(-b/k,0)兩點(diǎn)畫(huà)直線即可。
正比例函數(shù)y=kx(k≠0)的.圖象是過(guò)坐標(biāo)原點(diǎn)的一條直線,一般。0,0)和(1,k)兩點(diǎn)。(3)連線,可以作出一次函數(shù)的圖象一條直線。因此,作一次函數(shù)的圖象只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖象與x軸和y軸的交點(diǎn)分別是-k分之b與0,0與b).
2、性質(zhì):
。1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b(k≠0)。
。2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像都是過(guò)原點(diǎn)。
3、函數(shù)不是數(shù),它是指某一變化過(guò)程中兩個(gè)變量之間的關(guān)系。
4、k,b與函數(shù)圖像所在象限:
y=kx時(shí)(即b等于0,y與x成正比例):
當(dāng)k>0時(shí),直線必通過(guò)第一、三象限,y隨x的增大而增大;當(dāng)k0,b>0,這時(shí)此函數(shù)的圖象經(jīng)過(guò)第一、二、三象限;當(dāng)k>0,b
【初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)】相關(guān)文章:
數(shù)學(xué)函數(shù)知識(shí)點(diǎn)12-12
數(shù)學(xué)知識(shí)點(diǎn):函數(shù)的概念06-17
最新初中數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)08-07
初中數(shù)學(xué)函數(shù)教學(xué)設(shè)計(jì)07-28
關(guān)于函數(shù)數(shù)學(xué)知識(shí)點(diǎn)歸納03-07
函數(shù)知識(shí)點(diǎn)(必備)03-04