- 相關推薦
北京版六年級上冊數(shù)學知識點
在平凡的學習生活中,不管我們學什么,都需要掌握一些知識點,知識點在教育實踐中,是指對某一個知識的泛稱。為了幫助大家更高效的學習,以下是小編幫大家整理的北京版六年級上冊數(shù)學知識點,供大家參考借鑒,希望可以幫助到有需要的朋友。
運算法則
1.整數(shù)加法計算法則:
相同數(shù)位對齊,從低位加起,哪一位上的數(shù)相加滿十,就向前一位進一。
2.整數(shù)減法計算法則:
相同數(shù)位對齊,從低位加起,哪一位上的數(shù)不夠減,就從它的前一位退一作十,和本位上的數(shù)合并在一起,再減。
3.整數(shù)乘法計算法則:
先用一個因數(shù)每一位上的數(shù)分別去乘另一個因數(shù)各個數(shù)位上的數(shù),用因數(shù)哪一位上的數(shù)去乘,乘得的數(shù)的末尾就對齊哪一位,然后把各次乘得的數(shù)加起來。
4.整數(shù)除法計算法則:
先從被除數(shù)的高位除起,除數(shù)是幾位數(shù),就看被除數(shù)的前幾位;如果不夠除,就多看一位,除到被除數(shù)的哪一位,商就寫在哪一位的上面。如果哪一位上不夠商1,要補“0”占位。每次除得的余數(shù)要小于除數(shù)。
5.小數(shù)乘法法則:
先按照整數(shù)乘法的計算法則算出積,再看因數(shù)中共有幾位小數(shù),就從積的右邊起數(shù)出幾位,點上小數(shù)點;如果位數(shù)不夠,就用“0”補足。
6.除數(shù)是整數(shù)的小數(shù)除法計算法則:
先按照整數(shù)除法的法則去除,商的小數(shù)點要和被除數(shù)的小數(shù)點對齊;如果除到被除數(shù)的末尾仍有余數(shù),就在余數(shù)后面添“0”,再繼續(xù)除。
7.除數(shù)是小數(shù)的除法計算法則:
先移動除數(shù)的小數(shù)點,使它變成整數(shù),除數(shù)的小數(shù)點也向右移動幾位(位數(shù)不夠的補“0”),然后按照除數(shù)是整數(shù)的除法法則進行計算。
8.同分母分數(shù)加減法計算方法:
同分母分數(shù)相加減,只把分子相加減,分母不變。
9.異分母分數(shù)加減法計算方法:
先通分,然后按照同分母分數(shù)加減法的的法則進行計算。
10.帶分數(shù)加減法的計算方法:整數(shù)部分和分數(shù)部分分別相加減,再把所得的數(shù)合并起來。
小數(shù)乘除法的意義及法則
1.小數(shù)乘法意義:
小數(shù)乘整數(shù)的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)的和的簡便運算。例:3.5×4表示4個3.5相加是多少;虮硎3.5的4倍是多少。
一個數(shù)乘小數(shù)的意義與整數(shù)乘法的意義不同,是求這個數(shù)的十分之幾,百分之幾,千分之幾……。例:25×0.17,表示25的百分之十七是多少。
2.小數(shù)除法的意義
小數(shù)除法的意義與整數(shù)除法的意義相同,是已知兩個因數(shù)的積與其中的一個因數(shù),求另一個因數(shù)的運算。例:表示已知兩個因數(shù)的積是0.75和其中一個因數(shù)0.5,求另一個因數(shù)是多少。或表示0.75是0.5的多少倍。
小數(shù)乘除法的計算法則
1.小數(shù)乘法法則:
(1)先按照整數(shù)乘法的法則計算;
(2)看因數(shù)中一共有幾位小數(shù),就從積的右邊數(shù)出幾位,點上小數(shù)點。
2.小數(shù)除法法則:
(1)先按照整數(shù)除法的法則去除;
(2)商的小數(shù)點和被除數(shù)的小數(shù)點對齊;
(3)除到被除數(shù)的末尾仍有余數(shù),就在余數(shù)后面添0再繼續(xù)除。
代數(shù)初步知識
一、用字母表示數(shù)
1用字母表示數(shù)的意義和作用
2用字母表示常見的數(shù)量關系、運算定律和性質(zhì)、幾何形體的計算公式
(1)常見的數(shù)量關系
路程用s表示,速度v用表示,時間用t表示,三者之間的關系:
s=vt v=s/t t=s/v
總價用a表示,單價用b表示,數(shù)量用c表示,三者之間的關系:
a=bc b=a/c c=a/b
(2)運算定律和性質(zhì)
加法交換律:a+b=b+a
加法結合律:(a+b)+c=a+(b+c)
乘法交換律:ab=ba
乘法結合律:(ab)c=a(bc)
乘法分配律:(a+b)c=ac+bc
減法的性質(zhì):a-(b+c) =a-b-c
(3)用字母表示幾何形體的公式
長方形的長用a表示,寬用b表示,周長用c表示,面積用s表示。 c=2(a+b) s=ab
正方形的邊長a用表示,周長用c表示,面積用s表示。 c=4a s=a2
平行四邊形的底a用表示,高用h表示,面積用s表示。 s=ah
三角形的底用a表示,高用h表示,面積用s表示。
s=ah/2
梯形的上底用a表示,下底b用表示,高用h表示,s=(a+b)h/2
小學數(shù)學梯形性質(zhì)
1.連結梯形對角線中點的線段等于兩底的一半。
2.梯形ABCD中,AB∥CD,M為BC中點,MN⊥AD于N,則S梯形ABCD=MN·AD=2S△AND。
3.梯形在同一底上的兩角分別是40°和70°,則另一底與腰的和等于這個底的長。
4.梯形同側(cè)內(nèi)角平分線交于另一腰中點,則上下底的和等于這一腰的長。
5.?梯形上、下底中點的連線小于兩腰和的一半。
6.同一底上的兩底角和為90°的梯形,上下底中點的連線等于上下底中點的一半。
小學數(shù)學數(shù)的互化知識點
(1)小數(shù)化成分數(shù)
原來有幾位小數(shù),就在1的后面寫幾個零作分母,把原來的小數(shù)去掉小數(shù)點作分子,能約分的要約分。
(2)分數(shù)化成小數(shù)
用分母去除分子。能除盡的就化成有限小數(shù),有的不能除盡,不能化成有限小數(shù)的,一般保留三位小數(shù)。
(3)化有限小數(shù)
一個最簡分數(shù),如果分母中除了2和5以外,不含有其他的質(zhì)因數(shù),這個分數(shù)就能化成有限小數(shù);如果分母中含有2和5以外的質(zhì)因數(shù),這個分數(shù)就不能化成有限小數(shù)。
(4)小數(shù)化成百分數(shù)
只要把小數(shù)點向右移動兩位,同時在后面添上百分號。
(5)百分數(shù)化成小數(shù)
把百分數(shù)化成小數(shù),只要把百分號去掉,同時把小數(shù)點向左移動兩位。
(6)分數(shù)化成百分數(shù)
通常先把分數(shù)化成小數(shù)(除不盡時,通常保留三位小數(shù)),再把小數(shù)化成百分數(shù)。
(7)百分數(shù)化成小數(shù)
先把百分數(shù)改寫成分數(shù),能約分的要約成最簡分數(shù)。
拓展:
1.圓的概念:平面上到定點的距離等于定長的所有點組成的圖形叫做圓。
2.圓的組成:圓心:圓任意兩條對稱軸的交點為圓心。注:圓心一般符號O表示。直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。半徑:連接圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。
圓的直徑和半徑都有無數(shù)條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=d/2。
注:圓的半徑或直徑?jīng)Q定圓的大小,圓心決定圓的位置。
3.圓的周長:圍成圓的曲線的長度叫做圓的周長,用字母C表示。
4.圓周率:圓的周長與直徑的比值叫做圓周率。
圓的周長除以直徑的商是一個固定的數(shù),把它叫做圓周率,它是一個無限不循環(huán)小數(shù)(無理數(shù)),用字母π表示。計算時,通常取它的近似值,π≈3.14。
5.圓的面積公式:圓所占平面的大小叫做圓的面積。用字母S表示。
6.周長計算公式
(1)已知直徑:C=πd=2πr
(2)半圓的周長:1/2周長+直徑
7.面積計算公式:
(1)已知半徑:S=πr2
(2)已知直徑:S=π(d/2)2
(3)已知周長:S=π[c÷(2π)]2
比:兩個數(shù)相除也叫兩個數(shù)的比
1、比式中,比號(∶)前面的數(shù)叫前項,比號后面的項叫做后項,比號相當于除號,比的前項除以后項的商叫做比值。
連比,如:3:4:5讀作:3比4比5。
2、比表示的是兩個數(shù)的關系,可以用分數(shù)表示,寫成分數(shù)的形式,讀作幾比幾。
例:12∶20=12÷20=0.6
12∶20讀作:12比20。
區(qū)分比和比值:比值是一個數(shù),通常用分數(shù)表示,也可以是整數(shù)、小數(shù)。
比是一個式子,表示兩個數(shù)的關系,可以寫成比,也可以寫成分數(shù)的形式。
3、比的基本性質(zhì):比的前項和后項同時乘以或除以相同的數(shù)(0除外),比值不變。
4、化簡比:化簡之后結果還是一個比,不是一個數(shù)。
(1)用比的前項和后項同時除以它們的最大公約數(shù)。
(2)兩個分數(shù)的比,用前項后項同時乘分母的最小公倍數(shù),再按化簡整數(shù)比的方法來化簡。也可以求出比值再寫成比的形式。
(3)兩個小數(shù)的比,向右移動小數(shù)點的位置,也是先化成整數(shù)比。
5、求比值:把比號寫成除號再計算,結果是一個數(shù)(或分數(shù)),相當于商,不是比。
6、比和除法、分數(shù)的區(qū)別:
除法:被除數(shù)除號(÷)除數(shù)(不能為0)商不變性質(zhì)除法是一種運算。
分數(shù):分子分數(shù)線(—)分母(不能為0)分數(shù)的基本性質(zhì)分數(shù)是一個數(shù)。
比:前項比號(∶)后項(不能為0)比的基本性質(zhì)比表示兩個數(shù)的關系。
商不變性質(zhì):被除數(shù)和除數(shù)同時乘或除以相同的數(shù)(0除外),商不變。
分數(shù)的基本性質(zhì):分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。
分數(shù)除法和比的應用
1、已知單位“1”的量用乘法。
2、未知單位“1”的量用除法。
3、分數(shù)應用題基本數(shù)量關系(把分數(shù)看成比)
(1)甲是乙的幾分之幾?
甲=乙×幾分之幾
乙=甲÷幾分之幾
幾分之幾=甲÷乙
(2)甲比乙多(少)幾分之幾?
4、按比例分配:把一個量按一定的比分配的方法叫做按比例分配。
5、畫線段圖:
(1)找出單位“1”的量,先畫出單位“1”,標出已知和未知。
(2)分析數(shù)量關系。
(3)找等量關系。
( 4)列方程。
兩個量的關系畫兩條線段圖,部分和整體的關系畫一條線段圖。
小學數(shù)學真分數(shù)與假分數(shù)知識點
理解真分數(shù)、假分數(shù)、帶分數(shù)的意義。
像1/2、1/4、2/3、3/4,…這樣的分數(shù)叫作真分數(shù)。特點:分子都比分母小;分數(shù)值小于1。
像3/2、3/3、5/4、9/4,…這樣的分數(shù)叫作假分數(shù)。特點:分子比分母大,或者分子與分母相等;分數(shù)值大于或等于1。
像,這樣的分數(shù)叫作帶分數(shù)。特點:由整數(shù)和真分數(shù)兩部分組成的;分數(shù)值大于1。
帶分數(shù)的讀法:讀作:二又四分之一。
★補充知識點:
分子是分母倍數(shù)的假分數(shù)可以化成整數(shù)。
分子不是分母倍數(shù)的假分數(shù)可以化成帶分數(shù)。
小學數(shù)學求倒數(shù)的方法
、偾蠓謹(shù)的倒數(shù):交換分子、分母的位置。
、谇笳麛(shù)的倒數(shù):整數(shù)分之1。
、矍髱Х謹(shù)的倒數(shù):先化成假分數(shù),再求倒數(shù)。
、芮笮(shù)的倒數(shù):先化成分數(shù)再求倒數(shù)。
【北京版六年級上冊數(shù)學知識點】相關文章:
滬教版數(shù)學六年級上冊知識點12-22
青島版小學數(shù)學六年級上冊知識點11-27
青島版六年級上冊數(shù)學知識點07-18
北京中考數(shù)學知識點06-13
數(shù)學六年級上冊知識點12-27
西師版數(shù)學三年級上冊知識點08-02
北師大版初一數(shù)學上冊知識點07-06