高一上冊數(shù)學(xué)第三章知識點(diǎn)整理
在平平淡淡的學(xué)習(xí)中,大家最不陌生的就是知識點(diǎn)吧!知識點(diǎn)有時(shí)候特指教科書上或考試的知識。你知道哪些知識點(diǎn)是真正對我們有幫助的嗎?下面是小編精心整理的高一上冊數(shù)學(xué)第三章知識點(diǎn)整理,僅供參考,歡迎大家閱讀。
1、常見的函數(shù)模型有一次函數(shù)模型、二次函數(shù)模型、指數(shù)函數(shù)模型、對數(shù)函數(shù)模型、分段函數(shù)模型等。
2、用函數(shù)解應(yīng)用題的基本步驟是:
(1)閱讀并且理解題意.(關(guān)鍵是數(shù)據(jù)、字母的實(shí)際意義);
(2)設(shè)量建模;
(3)求解函數(shù)模型;
(4)簡要回答實(shí)際問題。
常見考法本節(jié)知識在段考和高考中考查的形式多樣,頻率較高,選擇題、填空題和解答題都有。多考查分段函數(shù)和較復(fù)雜的函數(shù)的最值等問題,屬于拔高題,難度較大。
誤區(qū)提醒
1、求解應(yīng)用性問題時(shí),不僅要考慮函數(shù)本身的定義域,還要結(jié)合實(shí)際問題理解自變量的取值范圍。
2、求解應(yīng)用性問題時(shí),首先要弄清題意,分清條件和結(jié)論,抓住關(guān)鍵詞和量,理順數(shù)量關(guān)系,然后將文字語言轉(zhuǎn)化成數(shù)學(xué)語言,建立相應(yīng)的數(shù)學(xué)模型。
【典型例題】
例1
(1)某種儲蓄的月利率是0.36%,今存入本金100元,求本金與利息的和(即本息和)y(元)與所存月數(shù)x之間的函數(shù)關(guān)系式,并計(jì)算5個(gè)月后的本息和(不計(jì)復(fù)利).
(2)按復(fù)利計(jì)算利息的一種儲蓄,本金為a元,每期利率為r,設(shè)本利和為y,存期為x,寫出本利和y隨存期x變化的函數(shù)式.如果存入本金1000元,每期利率2.25%,試計(jì)算5期后的本利和是多少?解:(1)利息=本金月利率月數(shù).y=100+1000.36%x=100+0.36x,當(dāng)x=5時(shí),y=101.8,5個(gè)月后的本息和為101.8元.
例2
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的.利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式。
(2)該企業(yè)已籌集到10萬元資金,并全部投入A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能是企業(yè)獲得最大利潤,其最大利潤約為多少萬元。(精確到1萬元)。
《函數(shù)》知識點(diǎn)復(fù)習(xí)
1. 函數(shù)的奇偶性
(1)若f(x)是偶函數(shù),那么f(x)=f(-x) ;
(2)若f(x)是奇函數(shù),0在其定義域內(nèi),則 f(0)=0(可用于求參數(shù));
(3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或 (f(x)≠0);
(4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性;
(5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;
2. 復(fù)合函數(shù)的有關(guān)問題
(1)復(fù)合函數(shù)定義域求法:若已知 的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求 f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即 f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。
(2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;
3.函數(shù)圖像(或方程曲線的對稱性)
(1)證明函數(shù)圖像的對稱性,即證明圖像上任意點(diǎn)關(guān)于對稱中心(對稱軸)的對稱點(diǎn)仍在圖像上;
(2)證明圖像C1與C2的對稱性,即證明C1上任意點(diǎn)關(guān)于對稱中心(對稱軸)的對稱點(diǎn)仍在C2上,反之亦然;
(3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;
(5)若函數(shù)y=f(x)對x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對稱;
(6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x= 對稱;
4.函數(shù)的周期性
(1)y=f(x)對x∈R時(shí),f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);
(2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù);
(3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù);
(4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對稱,則f(x)是周期為2 的周期函數(shù);
(5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2 的周期函數(shù);
(6)y=f(x)對x∈R時(shí),f(x+a)=-f(x)(或f(x+a)= ,則y=f(x)是周期為2 的周期函數(shù);
5.方程k=f(x)有解 k∈D(D為f(x)的值域);
a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;
(1) (a>0,a≠1,b>0,n∈R+);
(2) l og a N= ( a>0,a≠1,b>0,b≠1);
(3) l og a b的符號由口訣“同正異負(fù)”記憶;
(4) a log a N= N ( a>0,a≠1,N>0 );
6. 判斷對應(yīng)是否為映射時(shí),抓住兩點(diǎn):
(1)A中元素必須都有象且唯一;
(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
7. 能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。
8.對于反函數(shù),應(yīng)掌握以下一些結(jié)論:
(1)定義域上的單調(diào)函數(shù)必有反函數(shù);
(2)奇函數(shù)的反函數(shù)也是奇函數(shù);
(3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);
(4)周期函數(shù)不存在反函數(shù);
(5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;
(6) y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);
9.處理二次函數(shù)的問題勿忘數(shù)形結(jié)合
二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關(guān)系;
10 依據(jù)單調(diào)性
利用一次函數(shù)在區(qū)間上的保號性可解決求一類參數(shù)的范圍問題;
11 恒成立問題的處理方法:
(1)分離參數(shù)法;
(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;
練習(xí)題:
1. (-3,4)關(guān)于x軸對稱的點(diǎn)的坐標(biāo)為_________,關(guān)于y軸對稱的點(diǎn)的坐標(biāo)為__________,
關(guān)于原點(diǎn)對稱的坐標(biāo)為__________.
2. 點(diǎn)B(-5,-2)到x軸的距離是____,到y(tǒng)軸的距離是____,到原點(diǎn)的距離是____
3. 以點(diǎn)(3,0)為圓心,半徑為5的圓與x軸交點(diǎn)坐標(biāo)為_________________,
與y軸交點(diǎn)坐標(biāo)為________________
4. 點(diǎn)P(a-3,5-a)在第一象限內(nèi),則a的取值范圍是____________
5. 小華用500元去購買單價(jià)為3元的一種商品,剩余的錢y(元)與購買這種商品的件數(shù)x(件)
之間的函數(shù)關(guān)系是______________,x的取值范圍是__________
6. 函數(shù)y= 的自變量x的取值范圍是________
7. 當(dāng)a=____時(shí),函數(shù)y=x 是正比例函數(shù)
8. 函數(shù)y=-2x+4的圖象經(jīng)過___________象限,它與兩坐標(biāo)軸圍成的三角形面積為_________,
周長為_______
9. 一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)(1,5),交y軸于3,則k=____,b=____
10.若點(diǎn)(m,m+3)在函數(shù)y=- x+2的圖象上,則m=____
11. y與3x成正比例,當(dāng)x=8時(shí),y=-12,則y與x的函數(shù)解析式為___________
12.函數(shù)y=- x的圖象是一條過原點(diǎn)及(2,___ )的直線,這條直線經(jīng)過第_____象限,
當(dāng)x增大時(shí),y隨之________
13.函數(shù)y=2x-4,當(dāng)x_______,y0,b0,b>0; C、k
【高一上冊數(shù)學(xué)第三章知識點(diǎn)整理】相關(guān)文章:
高一數(shù)學(xué)上冊知識點(diǎn)整理:集合03-06
高一數(shù)學(xué)必修一第三章知識點(diǎn)整理07-22
數(shù)學(xué)高一函數(shù)知識點(diǎn)整理02-22
初二上冊數(shù)學(xué)第三章方向與位置知識點(diǎn)整理07-10
高一數(shù)學(xué)集合知識點(diǎn)整理02-18
初二數(shù)學(xué)上冊知識點(diǎn)整理07-27
高一數(shù)學(xué)第三章函數(shù)模型的應(yīng)用實(shí)例知識點(diǎn)整理07-22