av手机免费在线观看,国产女人在线视频,国产xxxx免费,捆绑调教一二三区,97影院最新理论片,色之久久综合,国产精品日韩欧美一区二区三区

高三解析幾何專題數(shù)學(xué)知識點

時間:2024-09-29 11:00:34 秀雯 數(shù)學(xué) 我要投稿
  • 相關(guān)推薦

高三解析幾何專題數(shù)學(xué)知識點

  在日常過程學(xué)習(xí)中,看到知識點,都是先收藏再說吧!知識點是傳遞信息的基本單位,知識點對提高學(xué)習(xí)導(dǎo)航具有重要的作用。相信很多人都在為知識點發(fā)愁,下面是小編為大家整理的高三解析幾何專題數(shù)學(xué)知識點,歡迎大家分享。

高三解析幾何專題數(shù)學(xué)知識點

  進(jìn)一步,把問題用圖形表示出來,需求直線x-2y=m所與求軌跡的切點。

  用判別式△=0→m=p,得切點Q(3p,p)點Q到直線的x-2y=0距離是-,即-=-→p=2

  直線過圓錐曲線的焦點

  復(fù)習(xí)導(dǎo)引:高考題解析部分大量的問題是直線與圓錐曲線相交,我們首先要抓住直線是否過圓錐曲線焦點?這部分第1至第5題闡明了直線過焦點的處理方法,第6題注又從反面說明在什么條件下才采用過焦點的方法。第4題引出了在什么條件下用兩式相減可以簡化推導(dǎo)過程。

  1. 已知橢圓-+-=1的左、右焦點分別為F1,F(xiàn)2。過F1的直線交橢圓于B,D兩點,過F2的直線交橢圓于A,C兩點,且AC⊥BD,垂足為P。

  (Ⅰ)設(shè)P點的坐標(biāo)為(x0,y0),證明:-+-

  (Ⅱ)求四邊形ABCD的面積的最小值。

  解(1)點P在以|F1F2|為直徑的圓上,∴x02+y02=1,

  -+--+-

  =-=-1

  解:分析(2)SABCD=S△ABC+S△ADC

  =-|AC||BP|+-|AC||DP|

  =-|AC||BD|

  下面是如何求出|AC|=?|BD|=?

  由橢圓第二定義:

  |BD|=|BF2|+|DF2|

  又右準(zhǔn)線方程為x=-=3,e=-=-=-|BF2|=(3-xB)e|DF2|=(3-xD)e|BD|=[6-(xB+xD)■過F2的直線lBDy=k(x-1),k≠0,k存在。

  |BD|=-■=-

  同理可求得:

  |AC|=-S=-(3k2+2)+(2k2+3)2-5(k2+1)2-

  SABCD-,當(dāng)3k2+2=2k2+3,k2=1,k=±1。

  當(dāng)k不存在,可設(shè)BD⊥x軸,這時kAC=0

  SABCD=-2-■=4-

  ∴(SABCD)min=-,此時k=±1

  注:本題第(2)用兩點間距離公式求|AC|、|BD|也可行,計算量稍大,如果直線過圓錐曲線焦點,就要考慮橢圓或雙曲線第二定義。

  三角形的知識點

  1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

  2、三角形的分類

  3、三角形的三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

  4、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

  5、中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

  6、角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

  7、高線、中線、角平分線的意義和做法

  8、三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個性質(zhì)叫三角形的穩(wěn)定性。

  9、三角形內(nèi)角和定理:三角形三個內(nèi)角的和等于180°

  推論1直角三角形的兩個銳角互余

  推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角和

  推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;三角形的內(nèi)角和是外角和的一半

  10、三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。

  11、三角形外角的性質(zhì)

  (1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;

  (2)三角形的一個外角等于與它不相鄰的兩個內(nèi)角和;

  (3)三角形的一個外角大于與它不相鄰的任一內(nèi)角;

  (4)三角形的外角和是360°。

  四邊形(含多邊形)知識點、概念總結(jié)

  一、平行四邊形的定義、性質(zhì)及判定

  1、兩組對邊平行的四邊形是平行四邊形。

  2、性質(zhì):

  (1)平行四邊形的對邊相等且平行

  (2)平行四邊形的對角相等,鄰角互補

  (3)平行四邊形的對角線互相平分

  3、判定:

  (1)兩組對邊分別平行的四邊形是平行四邊形

  (2)兩組對邊分別相等的四邊形是平行四邊形

  (3)一組對邊平行且相等的四邊形是平行四邊形

  (4)兩組對角分別相等的四邊形是平行四邊形

  (5)對角線互相平分的四邊形是平行四邊形

  4、對稱性:平行四邊形是中心對稱圖形

  二、矩形的定義、性質(zhì)及判定

  1、定義:有一個角是直角的平行四邊形叫做矩形

  2、性質(zhì):矩形的四個角都是直角,矩形的對角線相等

  3、判定:

  (1)有一個角是直角的平行四邊形叫做矩形

  (2)有三個角是直角的四邊形是矩形

  (3)兩條對角線相等的平行四邊形是矩形

  4、對稱性:矩形是軸對稱圖形也是中心對稱圖形。

  三、菱形的定義、性質(zhì)及判定

  1、定義:有一組鄰邊相等的平行四邊形叫做菱形

  (1)菱形的四條邊都相等

  (2)菱形的對角線互相垂直,并且每一條對角線平分一組對角

  (3)菱形被兩條對角線分成四個全等的直角三角形

  (4)菱形的面積等于兩條對角線長的積的一半

  2、s菱=爭6(n、6分別為對角線長)

  3、判定:

  (1)有一組鄰邊相等的平行四邊形叫做菱形

  (2)四條邊都相等的四邊形是菱形

  (3)對角線互相垂直的平行四邊形是菱形

  4、對稱性:菱形是軸對稱圖形也是中心對稱圖形

  四、正方形定義、性質(zhì)及判定

  1、定義:有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形

  2、性質(zhì):

  (1)正方形四個角都是直角,四條邊都相等

  (2)正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

  (3)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形

  (4)正方形的對角線與邊的夾角是45°

  (5)正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形

  3、判定:

  (1)先判定一個四邊形是矩形,再判定出有一組鄰邊相等

  (2)先判定一個四邊形是菱形,再判定出有一個角是直角

  4、對稱性:正方形是軸對稱圖形也是中心對稱圖形

  五、梯形的定義、等腰梯形的性質(zhì)及判定

  1、定義:一組對邊平行,另一組對邊不平行的四邊形是梯形。兩腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

  2、等腰梯形的性質(zhì):等腰梯形的兩腰相等;同一底上的兩個角相等;兩條對角線相等

  3、等腰梯形的判定:兩腰相等的梯形是等腰梯形;同一底上的兩個角相等的梯形是等腰梯形;兩條對角線相等的梯形是等腰梯形

  4、對稱性:等腰梯形是軸對稱圖形

  六、三角形的中位線平行于三角形的第三邊并等于第三邊的一半;梯形的中位線平行于梯形的兩底并等于兩底和的一半。

  七、線段的重心是線段的中點;平行四邊形的重心是兩對角線的交點;三角形的重心是三條中線的交點。

  八、依次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形。

  九、多邊形

  1、多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。

  2、多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。

  3、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

  4、多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。

  5、多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內(nèi)角相等。

  6、正多邊形:在平面內(nèi),各個角都相等,各條邊都相等的多邊形叫做正多邊形。

  7、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

  8、公式與性質(zhì)

  多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)·180°

  9、多邊形外角和定理:

  (1)n邊形外角和等于n·180°-(n-2)·180°=360°

  (2)邊形的每個內(nèi)角與它相鄰的外角是鄰補角,所以n邊形內(nèi)角和加外角和等于n·180°

  10、多邊形對角線的條數(shù):

  (1)從n邊形的一個頂點出發(fā)可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形

  (2)n邊形共有n(n-3)/2條對角線

  圓知識點、概念總結(jié)

  1、不在同一直線上的三點確定一個圓。

  2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  推論1①(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  推論2圓的兩條平行弦所夾的弧相等

  3、圓是以圓心為對稱中心的中心對稱圖形

  4、圓是定點的距離等于定長的點的集合

  5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

  6、圓的外部可以看作是圓心的距離大于半徑的點的集合

  7、同圓或等圓的半徑相等

  8、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  10、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。

  11、定理:圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角

  12、①直線L和⊙O相交d

 、谥本L和⊙O相切d=r

  ③直線L和⊙O相離d>r

  13、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  14、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點的半徑

  15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

  16、推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

  17、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

  18、圓的外切四邊形的兩組對邊的和相等,外角等于內(nèi)對角

  19、如果兩個圓相切,那么切點一定在連心線上

  20、①兩圓外離d>R+r

  ②兩圓外切d=R+r

 、蹆蓤A相交R-rr)

 、軆蓤A內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含dr)

  21、定理:相交兩圓的連心線垂直平分兩圓的公共弦

  22、定理:把圓分成n(n≥3):

  (1)依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

  (2)經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

  23、定理:任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

  24、正n邊形的每個內(nèi)角都等于(n-2)×180°/n

  25、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

  26、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長

  27、正三角形面積√3a/4a表示邊長

  28、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  29、弧長計算公式:L=n兀R/180

  30、扇形面積公式:S扇形=n兀R^2/360=LR/2

  31、內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)

  如何養(yǎng)成良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣

  制定計劃,成為習(xí)慣

  無論是學(xué)習(xí)哪一科,明確的目標(biāo)計劃都是最基本的方法,也是要被大家說爛了的提高成績的基本。

  數(shù)學(xué)也是一樣,雖然公式多,定義多,圖形多,但完全不影響制定數(shù)學(xué)的學(xué)習(xí)計劃。學(xué)習(xí)是一個長久性的打算,因此在制定數(shù)學(xué)學(xué)習(xí)內(nèi)容的過程中可以盡量的詳細(xì)一點。

  比如說每天做多少道題,掌握多少個公式,記住幾個定義等等。這樣才是學(xué)好高中數(shù)學(xué)應(yīng)該做的步驟。

  其次就是每天按照自己給自己的規(guī)定去做,不要想著偷懶,今天不愛做就留給明天,想著明天多做點補回來。

  這種想法是非常錯誤的,今天的任務(wù)就要今天完成,想著自己為了提高數(shù)學(xué)成績,無論如何都要努力。

  預(yù)習(xí)與復(fù)習(xí)相結(jié)合

  預(yù)習(xí)幫助大家在數(shù)學(xué)課上對知識有一個大概的了解,也對老師要講的內(nèi)容有個先知,不至于驚訝驚訝老師接下來要講什么。

  而復(fù)習(xí)就是對這一堂課的數(shù)學(xué)學(xué)習(xí)進(jìn)行一個驗收和反饋,檢驗自己是否學(xué)會數(shù)學(xué)老師講的內(nèi)容;反饋自己的學(xué)習(xí)成效,及時找到自己數(shù)學(xué)學(xué)習(xí)的問題以便及時解決。

  這樣在學(xué)習(xí)新的數(shù)學(xué)知識的時候就不會帶著之前留下來的疑問了。這對于學(xué)好高中數(shù)學(xué),提高數(shù)學(xué)成績非常有幫助。

  高質(zhì)量的完成作業(yè)

  作業(yè)是一個很好查缺補漏的過程,因此同學(xué)們想要學(xué)好數(shù)學(xué),就一定要認(rèn)真完成作業(yè)。不要依賴不會就空著等數(shù)學(xué)老師上課講這樣的想法,這樣只會退步。

  數(shù)學(xué)學(xué)習(xí)就是要不斷的動腦解決問題,所以作業(yè)要完成,還要高質(zhì)量的去完成,這樣才能不斷提高自己的能力。

  不要空太多的題不寫,就只等著老師公布正確答案和解題過程,這樣一來,需要自己消化的數(shù)學(xué)問題就因為自己的懶惰變得越來越多,以至于影響之后的學(xué)習(xí)效率。

  數(shù)學(xué)最常用且非常實用的學(xué)習(xí)方法

  1、預(yù)習(xí)很重要:

  往往被忽略,理由:沒時間,看不懂,不必要等。預(yù)習(xí)是學(xué)習(xí)的必要過程,還是提高自學(xué)能力的好方法。

  2、聽講有學(xué)問:

  聽分析、聽思路、聽?wèi)?yīng)用,關(guān)鍵內(nèi)容一字不漏,注意記錄。

  3、做好錯題本:

  每個會學(xué)習(xí)的學(xué)生都會有。最好再加個“好題本”。發(fā)現(xiàn)許多同學(xué)沒有錯題本,或者是只做不用。這樣學(xué)習(xí)效果都不好。

  4、用好課外書:

  正確認(rèn)識網(wǎng)絡(luò)課程和課外書籍,是副食,是幫助吸收的良藥,絕對不是課堂學(xué)習(xí)的替代品。

  5、注意總結(jié)和反思:

  知識點、解題方法和技巧、經(jīng)驗和教訓(xùn)。

  6、接受數(shù)學(xué)思想方法的指導(dǎo):

  要注意數(shù)學(xué)思想和方法的指導(dǎo),站得高,才能看得遠(yuǎn)。

  關(guān)于數(shù)學(xué)常見誤區(qū)有哪些

  1、被動學(xué)習(xí)

  許多同學(xué)進(jìn)入高中后,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉(zhuǎn),沒有掌握學(xué)習(xí)主動權(quán).表現(xiàn)在不定計劃,坐等上課,課前沒有預(yù)習(xí),對老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學(xué)內(nèi)容。

  2、學(xué)不得法

  老師上課一般都要講清知識的來龍去脈,剖析概念的內(nèi)涵,分析重點難點,突出思想方法。而一部分同學(xué)上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結(jié)、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。

  3、不重視基礎(chǔ)

  一些“自我感覺良好”的同學(xué),常輕視基本知識、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠(yuǎn),重“量”輕“質(zhì)”,陷入題海。到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。

  4、進(jìn)一步學(xué)習(xí)條件不具備

  高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎(chǔ)知識與技能為進(jìn)一步學(xué)習(xí)作好準(zhǔn)備。高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高。

  如二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的求法,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應(yīng)用題及實際應(yīng)用問題等?陀^上這些觀點就是分化點,有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補救措施,查缺補漏,分化是不可避免的。

【高三解析幾何專題數(shù)學(xué)知識點】相關(guān)文章:

高三數(shù)學(xué)數(shù)列知識點05-26

關(guān)于高三數(shù)學(xué)的教案:平面向量與解析幾何交匯的綜合問題04-04

高三數(shù)學(xué)復(fù)習(xí)知識點歸納03-08

高三數(shù)學(xué)知識點總結(jié)08-26

高三數(shù)學(xué)常用公式的知識點06-08

高三數(shù)學(xué)《向量的向量積》知識點06-08

高三數(shù)學(xué)抽樣方法知識點復(fù)習(xí)07-24

高三數(shù)學(xué)直線與圓知識點復(fù)習(xí)07-19

高三高考數(shù)學(xué)知識點05-24

高三數(shù)學(xué)立體幾何知識點歸納07-27