- 相關(guān)推薦
數(shù)學(xué)解答方法類型
數(shù)學(xué)解答方法可以分為多種類型,包括分析法、推理法、解析法、圖解法、模擬法、數(shù)值解法、函數(shù)解法、圖形解法、分類討論法、歸納法等。以下是小編整理的數(shù)學(xué)解答方法類型,歡迎大家借鑒與參考,希望對大家有所幫助。
1、配方法
所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數(shù)次冪的和形式。通過配方解決數(shù)學(xué)問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數(shù)等等。
3、換元法
換元法是數(shù)學(xué)中一個非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復(fù)雜的數(shù)學(xué)式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。
4、判別式法與韋達(dá)定理
一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2—4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運算中都有非常廣泛的應(yīng)用。
韋達(dá)定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應(yīng)用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關(guān)二次曲線的問題等,都有非常廣泛的應(yīng)用。
5、待定系數(shù)法
在解數(shù)學(xué)問題時,若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
6、構(gòu)造法
在解題時,我們常常會采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識互相滲透,有利于問題的解決。
7、反證法
反證法是一種間接證法,它是先提出一個與命題的結(jié)論相反的假設(shè),然后,從這個假設(shè)出發(fā),經(jīng)過正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。
反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(。┯/不大(。┯;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。
歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無源之水,無本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。
8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關(guān)的性質(zhì)定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關(guān)系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯(lián)系起來,通過運算達(dá)到求證的結(jié)果。所以用面積法來解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計算,有時可以不添置補(bǔ)助線,即使需要添置輔助線,也很容易考慮到。
9、幾何變換法
在數(shù)學(xué)問題的研究中,常常運用變換法,把復(fù)雜性問題轉(zhuǎn)化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習(xí)題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運動中的研究結(jié)合起來,有利于對圖形本質(zhì)的認(rèn)識。
幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對稱。
10、客觀性題的解題方法
選擇題是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類題型。選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎(chǔ)知識和基本技能,從而增大了試卷的容量和知識覆蓋面。
填空題是標(biāo)準(zhǔn)化考試的重要題型之一,它同選擇題一樣具有考查目標(biāo)明確,知識復(fù)蓋面廣,評卷準(zhǔn)確迅速,有利于考查學(xué)生的分析判斷能力和計算能力等優(yōu)點,不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。
要想迅速、正確地解選擇題、填空題,除了具有準(zhǔn)確的計算、嚴(yán)密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。
(1)直接推演法:直接從命題給出的條件出發(fā),運用概念、公式、定理等進(jìn)行推理或運算,得出結(jié)論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。
(2)驗證法:由題設(shè)找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當(dāng)遇到定量命題時,常用此法。
。3)特殊元素法:用合適的特殊元素(如數(shù)或圖形)代入題設(shè)條件或結(jié)論中去,從而獲得解答。這種方法叫特殊元素法。
。4)排除、篩選法:對于正確答案有且只有一個的選擇題,根據(jù)數(shù)學(xué)知識或推理、演算,把不正確的結(jié)論排除,余下的結(jié)論再經(jīng)篩選,從而作出正確的結(jié)論的解法叫排除、篩選法。
。5)圖解法:借助于符合題設(shè)條件的圖形或圖像的性質(zhì)、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。
。6)分析法:直接通過對選擇題的條件和結(jié)論,作詳盡的分析、歸納和判斷,從而選出正確的結(jié)果,稱為分析法。
【擴(kuò)展】
小升初數(shù)學(xué)難題解答方法
第一,你必需理解標(biāo)題問題。
理解標(biāo)題問題。未知量是什么?已知數(shù)據(jù)是什么?條件是什么?條件有可能滿足嗎?條件是否足以確定未知量?或者它不敷充分?或者多余?或者矛盾?
畫一張圖,引入適當(dāng)?shù)姆。將條件的差別部分分開。你能把它們寫出來嗎?
第二,找出已知數(shù)據(jù)與未知量之間的聯(lián)系。如果找不到直接的聯(lián)系,你也許不得不去考慮輔助標(biāo)題問題。最終你應(yīng)該得到一個解題方案。
擬訂方案。以前見過它嗎?或者你見過同樣的標(biāo)題問題以一種稍差別的形式出現(xiàn)嗎?你知道一道與它有關(guān)的標(biāo)題問題嗎?你知道一條可能有用的定理嗎?觀察未知量!并盡量想出一道你所熟悉的具有相同或相似未知量的標(biāo)題問題。
這里有一道標(biāo)題問題和你的標(biāo)題問題有關(guān)并且以前解過。你能利用它嗎?你能利用它的結(jié)果嗎?你能利用它的方法嗎?為了有可能應(yīng)用它,你是否應(yīng)該引入某個輔助元素?你能重新敘述這道標(biāo)題問題嗎?你還能以差別的方式敘述它嗎?回到定義上去。
如果你不解所提的標(biāo)題問題,先嘗試去解某道有關(guān)的標(biāo)題問題。你能否想到一道?更容易著手的相關(guān)標(biāo)題問題?一道更為遍及化的標(biāo)題問題?一道更為特殊化的標(biāo)題問題?一道類似的標(biāo)題問題?你能解出這道標(biāo)題問題的一部分嗎?只保存條件的一部分,而丟掉其他部分,那么未知量可以確定到什么程度,它能怎樣變革?你能從已知數(shù)據(jù)中得出一些有用的東西嗎?你能想到其他合適的已知數(shù)據(jù)來確定該未知量嗎?你能改變未知量或已知數(shù)據(jù),或者有須要的話,把兩者都改變,從而使新的未知量和新的已知數(shù)據(jù)相互更接近嗎?你用到所有的已知數(shù)據(jù)了嗎?你用到全部的條件了嗎?你把標(biāo)題問題中所有關(guān)鍵的概念都考慮到了嗎?
第三,執(zhí)行你的方案
執(zhí)行你的解題方案,檢查每一個步驟。你能清楚地看出這個步驟是正確的嗎?你能否證明它是正確的?
第四,檢查已經(jīng)得到的解答。
第五,回顧。
你能檢查這個結(jié)果嗎?你能檢驗這個論證嗎?
你能以差別的方式推導(dǎo)這個結(jié)果嗎?你能一眼就看出它來嗎?
你能在另外什么標(biāo)題問題中利用這個結(jié)果或這種方法嗎?
【數(shù)學(xué)解答方法類型】相關(guān)文章:
數(shù)學(xué)填空題的類型和解題分析方法11-25
產(chǎn)后最新催奶方法解答02-03
C語言類型轉(zhuǎn)換的方法09-14
使用Java的枚舉類型的方法04-03
怎么證明面面平行及解答方法04-25
考研英語閱讀理解答題方法03-23