關(guān)于數(shù)學(xué)思想方法
數(shù)學(xué)思想方法簡單的說就是求解的方法,那么,以下是小編給大家整理收集的關(guān)于數(shù)學(xué)思想方法,供大家閱讀參考。
關(guān)于數(shù)學(xué)思想方法1
特殊與一般的數(shù)學(xué)思想:對于在一般情況下難以求解的問題,可運(yùn)用特殊化思想,通過取特殊值、特殊圖形等,找到解題的規(guī)律和方法,進(jìn)而推廣到一般,從而使問題順利求解。常見情形為:用字母表示數(shù);特殊值的應(yīng)用;特殊圖形的應(yīng)用;用特殊化方法探求結(jié)論;用一般規(guī)律解題等。
整體的數(shù)學(xué)思想:所謂整體思想,就是當(dāng)我們遇到問題時,不著眼于問題的各個部分,而是有意識地放大考慮問題的視角,將所需要解決的問題看作一個整體,通過研究問題的整體形式、整體結(jié)構(gòu)、整體與局部的內(nèi)在聯(lián)系來解決問題的思想。用整體思想解題時,是把一些彼此獨(dú)立,但實(shí)質(zhì)上又相互緊密聯(lián)系的量作為整體來處理,一定要善于把握求值或求解的問題的內(nèi)在結(jié)構(gòu)、數(shù)與形之間的內(nèi)在結(jié)構(gòu),要敏銳地洞察問題的本質(zhì),有時也不要放棄直覺的作用,把注意力和著眼點(diǎn)放在問題的整體上。常見的情形為:整體代入;整式約簡;整體求和與求積;整體換元與設(shè)元;整體變形與補(bǔ)形;整體改造與合并;整體構(gòu)造與操作等。分類討論的數(shù)學(xué)思想:也稱分情況討論,當(dāng)一個數(shù)學(xué)問題在一定的題設(shè)下,其結(jié)論并不唯一時,我們就需要對這一問題進(jìn)行必要的分類。將一個數(shù)學(xué)問題根據(jù)題設(shè)分為有限的若干種情況,在每一種情況中分別求解,最后再將各種情況下得到的答案進(jìn)行歸納綜合。分類討論是根據(jù)問題的不同情況分類求解,它體現(xiàn)了化整為零和積零為整的思想與歸類整理的方法。運(yùn)用分類討論思想解題的關(guān)鍵是如何正確的進(jìn)行分類,即確定分類的標(biāo)準(zhǔn)。分類討論的原則是:(1)完全性原則,就是說分類后各子類別涵蓋的范圍之和,應(yīng)當(dāng)是原被分對象所涵蓋的范圍,即分類不能遺漏;(2)互斥性原則,就是說分類后各子類別涵蓋的范圍之間,彼此互相獨(dú)立,不應(yīng)重疊或部分重疊,即分類不能重復(fù);(3)統(tǒng)一性原則,就是說在同一次分類中,只能按所確定的一個標(biāo)準(zhǔn)進(jìn)行分類,即分類標(biāo)準(zhǔn)統(tǒng)一。分類的方法是:明確討論的對象,確定對象的全體,確立分類標(biāo)準(zhǔn),正確進(jìn)行分類,逐步進(jìn)行討論,獲取階段性結(jié)果,歸納小結(jié),綜合得出結(jié)論。常見的情形為:由字母系數(shù)引起的討論;由絕對值引起的討論;由點(diǎn)、線的運(yùn)動變化引起的討論;由圖形引起的討論;由邊、點(diǎn)的不確定引起的討論;存在特殊情形而引起的討論;應(yīng)用問題中的分類討論等。
轉(zhuǎn)化的數(shù)學(xué)思想:將未知解法或難以解決的問題,通過觀察、分析、聯(lián)想、類比等思維過程,選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行變換,化歸為在已知知識范圍內(nèi)已經(jīng)解決或容易解決的問題。解題的過程實(shí)際就是轉(zhuǎn)化的過程。常見的情形為:高次轉(zhuǎn)化為低次、多元轉(zhuǎn)化為一元、式子轉(zhuǎn)化為方程、次元轉(zhuǎn)化為主元、正面轉(zhuǎn)化為反面、分散轉(zhuǎn)化為集中、未知轉(zhuǎn)化為已知、動轉(zhuǎn)化為靜、部分轉(zhuǎn)化為整體、還有一般與特殊、數(shù)與形、相等與不等之間的相互轉(zhuǎn)化。
數(shù)形結(jié)合的數(shù)學(xué)思想:數(shù)與形是數(shù)學(xué)教學(xué)研究對象的兩個側(cè)面,把數(shù)量關(guān)系和空間形式結(jié)合起來去分析問題、解決問題,就是數(shù)形結(jié)合思想。數(shù)、式能反映圖形的準(zhǔn)確性,圖形能增強(qiáng)數(shù)、式的直觀性,“數(shù)形結(jié)合”可以調(diào)動和促進(jìn)學(xué)生形象思維和抽象思維的協(xié)調(diào)發(fā)展,溝通數(shù)學(xué)知識之間的聯(lián)系,從復(fù)雜的數(shù)量關(guān)系中凸顯最本質(zhì)的特征。數(shù)形結(jié)合是研究數(shù)學(xué)問題的有效途徑和重要策略,它體現(xiàn)了數(shù)學(xué)的和諧美、統(tǒng)一美。華羅庚先生曾用“數(shù)缺形時少直覺,形少數(shù)時難入微”作高度的概括。常見的情形為:利用數(shù)軸、函數(shù)的圖象和性質(zhì)、幾何模型、方程與不等式以及數(shù)式特征可以將代數(shù)問題轉(zhuǎn)化為集合問題;利用代數(shù)計(jì)算、幾何圖形特征可以將幾何問題轉(zhuǎn)化為代數(shù)問題;利用三角知識解決幾何問題;利用統(tǒng)計(jì)圖表讓統(tǒng)計(jì)數(shù)據(jù)更形象更直觀等。
函數(shù)與方程的思想:函數(shù)的思想就是利用運(yùn)動與變化的觀點(diǎn)、集合與對應(yīng)的思想,去分析和研究數(shù)學(xué)中的等量關(guān)系,建立和構(gòu)造函數(shù)關(guān)系,再運(yùn)用函數(shù)的圖象和性質(zhì)去分析問題,達(dá)到轉(zhuǎn)化問題的目的,從而使問題獲得解決。方程的思想就是從問題的數(shù)量關(guān)系入手,運(yùn)用數(shù)學(xué)語言將問題中的條件轉(zhuǎn)化為數(shù)學(xué)模型——方程或方程組,通過解方程或方程組,或者運(yùn)用方程的性質(zhì)去分析、轉(zhuǎn)化問題,使問題獲得解決。函數(shù)與方程的思想實(shí)際是就是一種模型化的思想。常見的情形為:數(shù)字問題、面積問題、幾何問題方程化;應(yīng)用函數(shù)思想解方程問題、不等問題、幾何問題、實(shí)際問題;利用方程作判斷;構(gòu)建方程模型探求實(shí)際問題;應(yīng)用函數(shù)設(shè)計(jì)方案和探求面積等。
常用數(shù)學(xué)方法如:配方法、消元法、換元法、待定系數(shù)法、構(gòu)造法、主元法、面積法、類比法、參數(shù)法、降次法、圖表法、估算法、分析法、綜合法、拼湊法、割補(bǔ)法、反證法、倒數(shù)法、同一法等。
關(guān)于數(shù)學(xué)思想方法2
初中數(shù)學(xué)中蘊(yùn)含的數(shù)學(xué)思想很多,其中最主要的數(shù)學(xué)思想方法包括轉(zhuǎn)化思想、數(shù)形結(jié)合思想、分類討論思想、函數(shù)與方程思想等.
(1)轉(zhuǎn)化思想.轉(zhuǎn)化思想就是人們將需要解決的問題,通過演繹、歸納等轉(zhuǎn)化手段,歸結(jié)為另一種相對容易解決或已經(jīng)有解決方法的問題,從而使原來的問題得到解決.轉(zhuǎn)化思想體現(xiàn)在數(shù)學(xué)解題過程中就是將未知的、陌生的、復(fù)雜的問題通過演繹和歸納轉(zhuǎn)化為已知的、熟悉的、簡單的問題.
初中數(shù)學(xué)中諸如化繁為簡、化難為易、化未知為已知等均是轉(zhuǎn)化思想的具體體現(xiàn).具體而言,代數(shù)式中加法與減法的轉(zhuǎn)化,乘法與除法的轉(zhuǎn)化,用換元法解方程,在幾何中添加輔助線,將四邊形的問題轉(zhuǎn)化為三角形的問題,將一些角轉(zhuǎn)化為圓周角并利用圓的知識解決問題等等都體現(xiàn)了轉(zhuǎn)化思想.在初中數(shù)學(xué)中,轉(zhuǎn)化思想運(yùn)用的最為廣泛.
(2)數(shù)形結(jié)合思想.?dāng)?shù)學(xué)是研究現(xiàn)實(shí)世界空間形式和數(shù)量關(guān)系的科學(xué),因而,在某種程度上可以說數(shù)學(xué)研究是圍繞著數(shù)與形展開的.初中數(shù)學(xué)中的“數(shù)”就是代數(shù)式、方程、函數(shù)、不等式等符號表達(dá)式,初中數(shù)學(xué)中的“形”就是圖形、圖象、曲線等形象表達(dá)式.?dāng)?shù)形結(jié)合思想的實(shí)質(zhì)是將抽象的數(shù)學(xué)語言(“數(shù)”)與直觀的圖象(“形“)結(jié)合起來,數(shù)形結(jié)合思想的關(guān)鍵就是抓住“數(shù)”與“形”之間本質(zhì)上的聯(lián)系,以“形”直觀地表達(dá)“數(shù)”,以“數(shù)”精確地研究“形”,實(shí)現(xiàn)代數(shù)與幾何之間的相互轉(zhuǎn)化.?dāng)?shù)形結(jié)合思想包括“以形助數(shù)”和“以數(shù)輔形”兩個方面,它可以使代數(shù)問題幾何化,幾何問題代數(shù)化.“數(shù)無形時不直觀,形無數(shù)時難入微.”數(shù)形結(jié)合是研究數(shù)學(xué)、解決數(shù)學(xué)問題的重要思想,在初中數(shù)學(xué)中有著廣泛應(yīng)用.
譬如,在初中數(shù)學(xué)中,通過數(shù)軸將數(shù)與點(diǎn)對應(yīng),通過直角坐標(biāo)系將函數(shù)與圖象對應(yīng)均體現(xiàn)了數(shù)形結(jié)合思想的應(yīng)用.再比如,用數(shù)形結(jié)合的思想學(xué)習(xí)相反數(shù)、絕對值等概念,學(xué)習(xí)有理數(shù)大小比較的法則,研究函數(shù)的`性質(zhì)等,從形象思維過渡到抽象思維,從而顯著降低了學(xué)習(xí)難度.
(3)分類討論思想.分類討論思想就是根據(jù)數(shù)學(xué)對象本質(zhì)屬性的共同點(diǎn)和差異點(diǎn),將數(shù)學(xué)對象區(qū)分為不同的種類.分類是以比較為基礎(chǔ)的,它有助于揭示數(shù)學(xué)對象之間的內(nèi)在聯(lián)系與規(guī)律,有助于學(xué)生總結(jié)歸納數(shù)學(xué)知識、
解決數(shù)學(xué)問題.
譬如,初中數(shù)學(xué)從整體上看分為代數(shù)、幾何、概率統(tǒng)計(jì)等幾大版塊,并分別采用不同方法進(jìn)行研究,就是分類思想的體現(xiàn).具體而言,實(shí)數(shù)的分類,方程的分類、三角形的分類、函數(shù)的分類、統(tǒng)計(jì)量的分類等等,都是分類思想的具體體現(xiàn).分類思想在初中數(shù)學(xué)中有大量運(yùn)用,從初中數(shù)學(xué)內(nèi)容的組織與展開到數(shù)學(xué)概念的界定與劃分再到數(shù)學(xué)問題的分析與解決都大量運(yùn)用著分類思想.
(4)函數(shù)與方程思想.函數(shù)與方程思想就是用函數(shù)的觀點(diǎn)和方法分析問題、解決問題.函數(shù)思想是客觀世界中事物運(yùn)動變化、相互聯(lián)系、相互制約的普遍規(guī)律在數(shù)學(xué)中的具體反映.函數(shù)與方程思想的本質(zhì)是變量之間的對應(yīng),即用變化的觀點(diǎn)和函數(shù)的形式將所研究的數(shù)量關(guān)系表示出來,然后用函數(shù)的性質(zhì)進(jìn)行研究,從而使問題獲得解決.如果函數(shù)的形式用解析式的方式表示,那么就可以將函數(shù)解析式看作方程,并通過解方程和對方程的研究使問題得到解決,這就是方程思想.
譬如初中數(shù)學(xué)中大量涉及一次函數(shù)、反比例函數(shù)、二次函數(shù)等內(nèi)容的數(shù)學(xué)問題都要用到函數(shù)與方程思想來解決.由于函數(shù)思想與方程思想的內(nèi)容和形式相一致,因而往往將其并稱為函數(shù)與方程思想,并將二者結(jié)合學(xué)習(xí)與
運(yùn)用.
除上述幾種主要的數(shù)學(xué)思想之外,初中數(shù)學(xué)中還有集合思想、對應(yīng)思想、符號化思想、公理化思想等.初中數(shù)學(xué)主要包括如下基本的數(shù)學(xué)方法:(1)幾種重要的科學(xué)思維方法:比較與分類、觀察與嘗試、分析與綜合、概括與抽象、特殊與一般、歸納與類比等;(2)幾種重要的推理方法:完全歸納法、綜合法、分析法、反證法、演繹法等;(3)幾種常用的求解方法:待定系數(shù)法、數(shù)學(xué)建模法、配方法、消元法、換元法、構(gòu)造法、坐標(biāo)法、參數(shù)法等.
1、配方法
所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個或幾個多項(xiàng)式正整數(shù)次冪的和形式。通過配方解決數(shù)學(xué)問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
2、因式分解法
因式分解,就是把一個多項(xiàng)式化成幾個整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。
3、換元法
換元法是數(shù)學(xué)中一個非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復(fù)雜的數(shù)學(xué)式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。
4、判別式法與韋達(dá)定理
一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。韋達(dá)定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應(yīng)用外,還可以求根的對稱函數(shù),計(jì)論二次方程根的符號,解對稱方程組,以及解一些有關(guān)二次曲線的問題等,都有非常廣泛的。
關(guān)于數(shù)學(xué)思想方法3
1、“方程”的思想
數(shù)學(xué)是研究事物的空間形式和數(shù)量關(guān)系的,初中最重要的數(shù)量關(guān)系是等量關(guān)系,其次是不等量關(guān)系。最常見的等量關(guān)系就是“方程”。比如等速運(yùn)動中,路程、速度和時間三者之間就有一種等量關(guān)系,可以建立一個相關(guān)等式:速度×?xí)r間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是“方程”,而通過方程里的已知量求出未知量的過程就是解方程。我們在小學(xué)就已經(jīng)接觸過簡易方程,而初一則比較系統(tǒng)地學(xué)習(xí)解一元一次方程,并總結(jié)出解一元一次方程的五個步驟。如果學(xué)會并掌握了這五個步驟,任何一個一元一次方程都能順利地解出來。初二和初三我們學(xué)習(xí)了解一元二次方程、二元二次方程組、簡單的三角方程;到了高中我們還將學(xué)習(xí)指數(shù)方程、對數(shù)方程、線性方程組、參數(shù)方程、極坐標(biāo)方程等。解這些方程的思維幾乎一致,都是通過一定的方法將它們轉(zhuǎn)化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五個步驟或者解一元二次方程的求根公式加以解決。物理中的能量守恒,化學(xué)中的化學(xué)平衡式,現(xiàn)實(shí)中的大量實(shí)際應(yīng)用,都需要建立方程,通過解方程來求出結(jié)果。因此,同學(xué)們一定要將解一元一次方程和解一元二次方程學(xué)好,進(jìn)而為學(xué)好其它形式的方程打好基礎(chǔ)。
所謂的“方程”思想就是對于數(shù)學(xué)問題,特別是現(xiàn)實(shí)當(dāng)中碰到的未知量和已知量的錯綜復(fù)雜的關(guān)系,善于用“方程”的觀點(diǎn)去構(gòu)建有關(guān)的方程,進(jìn)而用解方程的方法去解決它。
2、“數(shù)形結(jié)合”的思想
大千世界,“數(shù)”與“形”無處不在。任何事物,剝?nèi)ニ馁|(zhì)的方面,只剩下形狀和大小這兩個屬性,就交給數(shù)學(xué)去研究了。初中數(shù)學(xué)的兩個分支——代數(shù)和幾何,代數(shù)是研究“數(shù)”的,幾何是研究“形”的。但是,研究代數(shù)要借助“形”,研究幾何要借助“數(shù)”,“數(shù)形結(jié)合”是一種趨勢,越學(xué)下去,“數(shù)”與“形”越密不可分,到了高中,就出現(xiàn)了專門用代數(shù)方法去研究幾何問題的一門課,叫做“解析幾何”。在初三,建立平面直角坐標(biāo)系后,研究函數(shù)的問題就離不開圖象了。往往借助圖象能使問題明朗化,比較容易找到問題的關(guān)鍵所在,從而解決問題。在今后的數(shù)學(xué)學(xué)習(xí)中,要重視“數(shù)形結(jié)合”的思維訓(xùn)練,任何一道題,只要與“形”沾得上一點(diǎn)邊,就應(yīng)該根據(jù)題意畫出草圖來分析一番,這樣做,不但直觀,而且全面,整體性強(qiáng),容易找出切入點(diǎn),對解題大有益處。嘗到甜頭的人慢慢會養(yǎng)成一種“數(shù)形結(jié)合”的好習(xí)慣。
3、“對應(yīng)”的思想
“對應(yīng)”的思想由來已久,比如我們將一支鉛筆、一本書、一棟房子對應(yīng)一個抽象的數(shù)“1”,將兩只眼睛、一對耳環(huán)、雙胞胎對應(yīng)一個抽象的數(shù)“2”;隨著學(xué)習(xí)的深入,我們還將“對應(yīng)”擴(kuò)展到對應(yīng)一種形式,對應(yīng)一種關(guān)系,等等。比如我們在化簡求值計(jì)算中,將式子中有關(guān)字母或某個整體的值,對應(yīng)代入,直接算出原式的結(jié)果。又比如我們到初三綜合學(xué)習(xí)了與圓有關(guān)的角,圓心角、圓周角、弦切角的數(shù)量關(guān)系必須“對應(yīng)”同一段弧才能成立。這就是運(yùn)用“對應(yīng)”的思想和方法來解題。初二、初三我們還看到數(shù)軸上的點(diǎn)與實(shí)數(shù)之間的一一對應(yīng),直角坐標(biāo)平面上的點(diǎn)與一對有序?qū)崝?shù)之間的一一對應(yīng),函數(shù)與其圖象之間的對應(yīng)?傊,“對應(yīng)”的思想在今后的學(xué)習(xí)中將會發(fā)揮越來越大的作用。
4、“轉(zhuǎn)化”的思想
解數(shù)學(xué)題最根本的途徑是“化難為易,化繁為簡,化未知為已知”,也就是把復(fù)雜繁難的數(shù)學(xué)問題通過一定的數(shù)學(xué)思維、方法和手段,逐漸將它轉(zhuǎn)變成一個大家熟知的簡單的數(shù)學(xué)形式,然后通過大家所熟悉的數(shù)學(xué)運(yùn)算把它解決。
比如,我們學(xué)校要擴(kuò)大校園,需要向某村征地。而某村給了一塊形狀不規(guī)則的地,如何丈量它的面積呢?首先,使用適當(dāng)?shù)臏y量工具,依據(jù)一定的比例,將實(shí)際地形繪制成紙上圖形,然后將紙上圖形分割成若干塊梯形、長方形、三角形,利用學(xué)過的面積計(jì)算方法,計(jì)算出這些圖形的面積之和,也就得到了這塊不規(guī)則地形的總面積。在這里,我們把無法計(jì)算的不規(guī)則圖形轉(zhuǎn)化成了可以計(jì)算的規(guī)則圖形,從而解決了土地丈量問題。另外,我們前面提到的各種多元方程、高次方程,利用“消元”、“降次”等方法,最終都可以把它們轉(zhuǎn)化成一元一次方程或一元二次方程,然后用已知的步驟或公式把它們解決。
“轉(zhuǎn)化和替代”的思想,是解題的最重要的思維習(xí)慣。面對難題,面對沒有見過的題,首先就要想到“轉(zhuǎn)化”,也總是能夠“轉(zhuǎn)化”的。平時,要多留心老師是怎樣解題的,是怎樣“化難為易、化繁為簡、化未知為已知”的。同學(xué)之間也應(yīng)多交流交流“成功轉(zhuǎn)化”的體會,深入理解“轉(zhuǎn)化”的真正含義,切實(shí)掌握“轉(zhuǎn)化”的思維和技巧。
一、什么是數(shù)學(xué)思想方法
數(shù)學(xué)思想是指現(xiàn)實(shí)世界的空間形式和數(shù)量關(guān)系反映到人的意識之中,經(jīng)過思維活動而產(chǎn)生的一種結(jié)果、它是數(shù)學(xué)中處理問題的基本觀點(diǎn),是對數(shù)學(xué)基礎(chǔ)知識與基本方法本質(zhì)的概括,是創(chuàng)造性地發(fā)展數(shù)學(xué)的指導(dǎo)方針。數(shù)學(xué)思想比一般說的數(shù)學(xué)概念具有更高的抽象概括水平,后者比前者更具體更豐富,而前者比后者更本質(zhì)更深刻。數(shù)學(xué)方法是指人們?yōu)榱诉_(dá)到某種目的而采取的手段、途徑和行為方式中所包含的可操作的規(guī)則或模式。數(shù)學(xué)思想和數(shù)學(xué)方法兩者既統(tǒng)一又有區(qū)別。例如、在初中代數(shù)中,解多元方程組,用的是“消元法”;解高次方程,用的是“降次法”;解雙二次方程、用的是“替換法”。這里的“消元”、“降次”、“替換”都是具體的數(shù)學(xué)方法,但它們不是數(shù)學(xué)思想,這三種方法共同體現(xiàn)出“轉(zhuǎn)化”這一數(shù)學(xué)思想,即把復(fù)雜問題轉(zhuǎn)化為簡單問題的思想。具體的數(shù)學(xué)方法,不能冠以“思想”二字。如“配方法”,就不能稱為數(shù)學(xué)思想、它的實(shí)質(zhì)是恒等變形,體現(xiàn)了“變換”的數(shù)學(xué)思想。然而,每一種數(shù)學(xué)方法、都體現(xiàn)了一定的數(shù)學(xué)思想;每一種數(shù)學(xué)思想在不同的場合又通過一定的手段表現(xiàn)出來,這里的手段就是數(shù)學(xué)方法。也就是說,數(shù)學(xué)思想是理性認(rèn)識、是相關(guān)的數(shù)學(xué)方法的精神實(shí)質(zhì)和理論依據(jù)。數(shù)學(xué)方法是指向?qū)嵺`的、是工具性的,是實(shí)施有關(guān)思想的技術(shù)手段。因此、人們通常將數(shù)學(xué)思想和方法看成一個整體概念—數(shù)學(xué)思想方法。一般來說,數(shù)學(xué)思想方法具有三個層次:低層次的數(shù)學(xué)思想方法(如消元法、換元法、代人法等),較高層次的數(shù)學(xué)思想方法(如分析、綜合、歸納、演繹、概括、抽象、類比等),高層次的數(shù)學(xué)思想方法(如轉(zhuǎn)化、分類、數(shù)形結(jié)合等)。較低層次的數(shù)學(xué)思想方法經(jīng)抽象概括可上升為較高層次的數(shù)學(xué)思想方法,各層次間沒有明確的界限。
二、為什么要研究初中數(shù)學(xué)思想方法
1、教學(xué)本身的需要初中數(shù)學(xué)教材體系包括兩條主線。其一是數(shù)學(xué)知識,這是編寫教材的一條明線;其二是數(shù)學(xué)思想方法,這是編寫教材的指導(dǎo)思想,它是大都不能明確寫進(jìn)教材的一條暗線。前者容易理解,后者不易看明;前者是教材寫什么,后者則明確為什么要這樣寫;只有理解后者才能真正從整體上、本質(zhì)上理解教材!毒拍曛屏x務(wù)教育全日制初級中學(xué)數(shù)學(xué)教學(xué)大綱》明確指出:“初中數(shù)學(xué)的基礎(chǔ)知識主要是初中代數(shù)、
幾何中的概念、法則、性質(zhì)、公式、公理、定理以及由其內(nèi)容反映出來的數(shù)學(xué)思想和方法!边@就要求我們在數(shù)學(xué)知識教學(xué)的同時,必須注意數(shù)學(xué)思想方法的有機(jī)滲透和統(tǒng)帥作用。只有這樣、才能有助于學(xué)生形成一個既有肉體又有靈魂的活的數(shù)學(xué)知識結(jié)構(gòu),促進(jìn)學(xué)生數(shù)學(xué)能力的發(fā)展,推動學(xué)生思維一般品質(zhì)乃至整個素質(zhì)的全面提高。
2、數(shù)學(xué)發(fā)展的需要翻開數(shù)學(xué)史,從算術(shù)到代數(shù),從常量數(shù)學(xué)到變量數(shù)學(xué),從偶然數(shù)學(xué)到必然數(shù)學(xué),從“明晰”數(shù)學(xué)到“模糊”數(shù)學(xué),以及從手工證明到機(jī)器證明等,歷史上的這幾次重大轉(zhuǎn)折,首先是數(shù)學(xué)思想方法的轉(zhuǎn)變,這種轉(zhuǎn)變還表明了數(shù)學(xué)的發(fā)展不僅是量的發(fā)展、還有質(zhì)的飛躍,隨著數(shù)學(xué)的發(fā)展,數(shù)學(xué)思想方法日益豐富。如果說歷史上是數(shù)學(xué)思想方法推進(jìn)了數(shù)學(xué)科學(xué),那么在數(shù)學(xué)教學(xué)中,就是數(shù)學(xué)思想方法在傳導(dǎo)著數(shù)學(xué)的精神,在塑造著人的靈魂,在對一代人的數(shù)學(xué)素質(zhì)實(shí)施著深刻、穩(wěn)定而持久的影響。
3、國民素質(zhì)的需要當(dāng)今世界,青少年只有具備很強(qiáng)的適應(yīng)能力,才能參與社會競爭。對數(shù)學(xué)來說,就是具備運(yùn)用所學(xué)基礎(chǔ)知識解決實(shí)際問題的能力,根據(jù)需要去自學(xué)新知識的能力。因此,數(shù)學(xué)思想方法的培養(yǎng)比只教會學(xué)生幾個數(shù)學(xué)公式更為重要,它將使學(xué)生獲得自學(xué)數(shù)學(xué)、發(fā)展數(shù)學(xué)的本領(lǐng),獲得把數(shù)學(xué)思想方法遷移為解決其它問題的能力、從而形成更什的智能結(jié)構(gòu)、讓學(xué)生終生受益。正如德閏學(xué)者馮?勞厄說的:“教育尤非是一切學(xué)過的東西都忘掉時所剩下的東西!边@種使人終身受用的東西、數(shù)學(xué)教學(xué)中指數(shù)學(xué)思想方法有資料表明、我國的中學(xué)生畢業(yè)后直接用到的數(shù)學(xué)知識并不多,更多的是受到數(shù)學(xué)思想方法的熏陶與啟迪
4、教學(xué)改革的需要當(dāng)前數(shù)學(xué)教學(xué)中,過于強(qiáng)調(diào)對定義、定理、法則、公式的灌輸與記憶,不注意這些概念、知識的發(fā)生、發(fā)展、應(yīng)用過程的揭示與解釋,不善于將這一過程中豐富的思想方法進(jìn)行抽象和概括,存在著“掐頭去尾燒中段”的狀況,即使有應(yīng)用過程、也只是在解題過程中、強(qiáng)調(diào)對問題一招一式、一題-解、一法一題的個別解決,定勢套路的總結(jié),而輕視思路分析、忽視解題的思維過程,不能將具體的知識和個別的數(shù)學(xué)方法上升到數(shù)學(xué)思想的高度、揭示方法的實(shí)質(zhì)和規(guī)律,長此以往,嚴(yán)重阻礙r學(xué)生創(chuàng)造力的培養(yǎng)和發(fā)展,而數(shù)學(xué)思想方法的教學(xué)是把傳統(tǒng)的知識型教學(xué)轉(zhuǎn)化為能力型教學(xué)的關(guān)鍵,是培養(yǎng)創(chuàng)造性人才的良好手段和渠道。
三、初中數(shù)學(xué)思想方法主要有哪些
根據(jù)“大綱’‘精神,初中數(shù)學(xué)的基本思想主要指轉(zhuǎn)化、分類、數(shù)形結(jié)合等基本方法主要指待定系數(shù)法、消兒法、配方法、換元法、圖象法等由于數(shù)學(xué)方法在教材中大都有具體陳述,而數(shù)學(xué)思想?yún)s是隱含在知識系統(tǒng)之中、這為強(qiáng)化數(shù)學(xué)思想方法帶來了一定困難_為此、下面談?wù)勣D(zhuǎn)化、分類討論、數(shù)形結(jié)合等在初中數(shù)學(xué)中的表現(xiàn)「〕1、轉(zhuǎn)化思想所謂轉(zhuǎn)化思想是指一種研究對象在一定條件下轉(zhuǎn)化為另一種研究對象的思維方式轉(zhuǎn)化思想是數(shù)學(xué)思想方法的核心,其它數(shù)學(xué)思想方法都是轉(zhuǎn)化的手段或策略)初中數(shù)學(xué)中運(yùn)用轉(zhuǎn)化思想具體表現(xiàn)在以下三個方面:(l)把新問題轉(zhuǎn)化為原來研究過的問題如有理數(shù)減法轉(zhuǎn)化為加法,除法轉(zhuǎn)化為乘法等(助把復(fù)雜的問題轉(zhuǎn)化為簡單的問題(,新問題用已有的方法不能或難以解決時,建立新的研究方式如引進(jìn)負(fù)數(shù),建立數(shù)軸;變利用逆運(yùn)算的性質(zhì)解方程為利用等式的性質(zhì)解方程,等等!2、分類討論思想所謂分類討論是指對于復(fù)雜的對象,為了研究的需要、根據(jù)對象本質(zhì)屬性的相同點(diǎn)和差異性,將對象區(qū)分為不同種類,通過研究各類對象的性質(zhì),從而認(rèn)識整體的性質(zhì)的思想方式。在分類討論中要注意標(biāo)準(zhǔn)的同一性、即劃分始終是同一個標(biāo)準(zhǔn)、這個標(biāo)準(zhǔn)必須是科學(xué)合理的;分域的互斥性、即所分成的各類既要互不包含、義要使各類總和等于討論的全集;分域的逐級性,有的問題分類后還可在每,類中丙繼續(xù)分類。運(yùn)用分類討論思想指導(dǎo)數(shù)學(xué)教學(xué),有利于學(xué)生歸納、總結(jié)所學(xué)的數(shù)學(xué)知識,使之系統(tǒng)化、條理化、并逐步形成一個完整的知識結(jié)構(gòu)網(wǎng)絡(luò),這有利于學(xué)生嚴(yán)密、清晰、合理地探索解題思路,提高數(shù)學(xué)思維能力。在初中數(shù)學(xué)中需要分類討淪的問題主要表現(xiàn)個方而:(扮有的數(shù)學(xué)概念、定理的論證包含多種情況、這類問題需要分類討論。如平面兒何中二角形的分類、四邊形的分類、角的分類、圓周角定理、圓冪定理、弦切角定理等的證明,都涉及到分類i寸論(約解含字毋參數(shù)或絕對值符號的為一程、不等式、討論算術(shù)根、正比例和反比例的數(shù)中二次項(xiàng)系數(shù)。
與圖象的開L:]方向等,由于這些參數(shù)的取位不同或要去掉絕對值符號就有不同的結(jié)果、這類問題需要分類討論(3)有的數(shù)學(xué)問題、雖結(jié)論惟一但導(dǎo)致這結(jié)論的前提不盡相同、這類問題也要分類討論3一效形結(jié)合思想所謂數(shù)形結(jié)合是指抽象的數(shù)學(xué)語言與形象直觀的圖形結(jié)合起來、從而實(shí)現(xiàn)由抽象向具體轉(zhuǎn)化的一種思維方式。
華羅庚說過:“數(shù)缺形時不直觀,形少數(shù)時難人微”有些數(shù)最關(guān)系、借助于圖形的性質(zhì),可以使許多抽象的概念和復(fù)雜的關(guān)系直觀化、形象化、簡單化,而圖形的一些性質(zhì)、借助于數(shù)量的計(jì)算和分析、得以嚴(yán)謹(jǐn)化。在初中階段,數(shù)形結(jié)合的“形”可以是數(shù)軸、函數(shù)的圖象和幾何圖形等等、它們都具有形象化的特點(diǎn)數(shù)形結(jié)合思想在初中數(shù)學(xué)中主要表現(xiàn)在以下兩個方面;(l)以形助數(shù),幫助學(xué)生深刻理解數(shù)學(xué)概念如教師可以用數(shù)軸上點(diǎn)和實(shí)數(shù)之間的對應(yīng)關(guān)系來講清相反數(shù)、絕對值的概念以及比較兩個數(shù)大小的方法;運(yùn)用函數(shù)圖象的性質(zhì)討淪一元三次方程的根以及討論一7乙一次小等式等等(2)以數(shù)助形,幫助學(xué)生簡化解題方法。初中數(shù)學(xué)中還滲透了類比、歸納、聯(lián)想等數(shù)學(xué)思想方法這些思想力一法之間,是相互滲透、互相促進(jìn)的,在數(shù)學(xué)教學(xué)中要有機(jī)地結(jié)合起來。
四、如何加強(qiáng)初中數(shù)學(xué)思想方法的滲透
1、把握數(shù)學(xué)思想方法的層次性根據(jù)‘、大綱”精神、在初中要求‘’了解”的數(shù)學(xué)思想有轉(zhuǎn)化、分類討論、數(shù)形結(jié)合、類比等要求“了解”的方法有分類法、類比垮、反證法;要求‘理解”或“會應(yīng)用”的方法有待定系數(shù)法、消兀法、降次法、配方法、換元法、圖象法。這吸“了解”、“理解”、“會運(yùn)用”是教學(xué)要求的具體尺子、隨便提高或降低都會給這一基礎(chǔ)知識的教學(xué)帶來災(zāi)難
2、加強(qiáng)知識的發(fā)生過程、適時滲透數(shù)學(xué)思想方法萊布尼茲有一句名言:“沒有什」么比看到發(fā)明的源泉(過程)比發(fā)明本身吏重要了”。數(shù)學(xué)教學(xué)不應(yīng)是數(shù)學(xué)活動結(jié)果的教學(xué)、而應(yīng)是數(shù)學(xué)活動〔思維活動)過程的教學(xué)數(shù)學(xué)知識的發(fā)生過程、實(shí)際上也是數(shù)學(xué)思想方法的發(fā)生過程。我們在教學(xué)中不僅要告訴學(xué)且有哪些數(shù)學(xué)思想和力一法、它們各有什么用、而且更重要的是向?qū)W生展現(xiàn)概念的形成過程、結(jié)論的推導(dǎo)過程、方法的思考過程、問題的被發(fā)現(xiàn)過程、思路的探索過程、規(guī)律的被揭示過程等。否則學(xué)生遇到新問題時,盡管頭腦中也知道要在數(shù)學(xué)思想方法的指導(dǎo)下解決,但仍然不知從何處人手
3、既要突出重點(diǎn)、又要逐步滲透在教學(xué)過程的不同階段,對數(shù)學(xué)思想方法的教學(xué)的側(cè)重點(diǎn)應(yīng)有所不同。在低年級介紹較低層次,在高年級介紹較高層次;新授課階段介紹低層次的,復(fù)習(xí)鞏固階段介紹較高層次的。下面以二元一次方程組的解法的教學(xué)為例加以說明:開始講代入消元法和加減消元法,讓學(xué)生明確兩者雖然不同,但作用卻是一致的—都把二元一次方程組化為一元一次方程,兩者統(tǒng)一稱為消元法。消元的思想是解二元一次方程組的基本思想;在復(fù)習(xí)階段則讓學(xué)生理解消元思想實(shí)施的結(jié)果是化二元為一元,即化繁為簡、化陌生為熟悉,為徹底解決問題鋪平道路,從而把消元的思想上升為化簡和轉(zhuǎn)化的高層次的數(shù)學(xué)思想。
4、努力做到掌握數(shù)學(xué)方法和滲透數(shù)學(xué)思想的有機(jī)結(jié)合數(shù)學(xué)教學(xué)本身就是思維活動過程的教學(xué),引導(dǎo)學(xué)生把握數(shù)學(xué)方法,按照思維活動的規(guī)律,滲透合理的數(shù)學(xué)思想,才能提高和發(fā)展學(xué)生的思維能力。具體可從兩個方面人手:一方面,通過數(shù)學(xué)思想的滲透,啟發(fā)、幫助學(xué)生發(fā)現(xiàn)和認(rèn)識教科書中闡述的數(shù)學(xué)方法,使得數(shù)學(xué)不只是單純的灌輸,而是使這些方法成為分析問題和解決問題的有力工具,做到自然而然地掌握和運(yùn)用;另一方面,通過對數(shù)學(xué)方法的掌握,進(jìn)一步了解隱含于其中的數(shù)學(xué)思想,認(rèn)識到具體事物的本質(zhì),從而逐步掌握科學(xué)的思想方法。以上這兩個方面的交替發(fā)展,還可以從新舊知識的聯(lián)系,轉(zhuǎn)化、發(fā)展等方面引發(fā)學(xué)生的思維活動,使未知問題轉(zhuǎn)化為已知問題而得到解決。這就要求教學(xué)過程中必須根據(jù)問題的具體情況及時創(chuàng)設(shè)思維情境,如暗示、引導(dǎo)、分析、揭示等,這些方法會使學(xué)生的思維豁然開朗,留下深刻的印象,并且饒有趣味。例如,計(jì)算有理數(shù)乘除混合運(yùn)算時,把除以a變?yōu)槌艘詌/a,使兩種運(yùn)算轉(zhuǎn)化為一種運(yùn)算,這是多種運(yùn)算向統(tǒng)一運(yùn)算轉(zhuǎn)化的體現(xiàn)。在二元、三元一次方程組的解法教學(xué)中,消元的思想就成為轉(zhuǎn)化的。
指導(dǎo)思想,而代入法、加減法是這一指導(dǎo)思想產(chǎn)生的必然方法。當(dāng)然、加強(qiáng)初中數(shù)學(xué)思想方法的滲透,并不是靠對幾個范例的分析就能解決的,而要靠在整個教學(xué)過程中站在方法論的高度講出學(xué)生在課本里的字里行間看不出的奇珍異寶。
【數(shù)學(xué)思想方法】相關(guān)文章:
數(shù)學(xué)思想方法06-26
小學(xué)數(shù)學(xué)數(shù)學(xué)思想方法06-27
數(shù)學(xué)思想方法推薦05-06
數(shù)學(xué)的轉(zhuǎn)化思想方法05-06
中考數(shù)學(xué)思想方法05-06
論數(shù)學(xué)思想方法05-07
淺析數(shù)學(xué)思想方法06-27
數(shù)學(xué)思想方法聚焦06-27
關(guān)于數(shù)學(xué)的思想方法05-09
數(shù)學(xué)思想方法的突破05-11