小學(xué)數(shù)學(xué)應(yīng)用題及解析
1. 一個(gè)四位數(shù)除以119余96,除以120余80.求這四位數(shù).
解:用盈虧問題的思想來解答。
商是(96-80)(120-119)=16,所以被除數(shù)是12016+80=2000。
2. 有四個(gè)不同的自然數(shù),其中任意兩個(gè)數(shù)之和是2的倍數(shù),任意三個(gè)數(shù)的和是3的倍數(shù),求滿足條件的最小的四個(gè)自然數(shù).
解:任意兩個(gè)數(shù)之和是2的倍數(shù),說明這些數(shù)全部是偶數(shù)或者全部是奇數(shù)。
任意三個(gè)數(shù)的和是3的倍數(shù),說明這些數(shù)除以3的余數(shù)相同。
要滿足條件的最小自然數(shù),因?yàn)?是自然數(shù)了。所以我認(rèn)為結(jié)果是0、6、12、18。
3. 在一環(huán)形跑道上,甲從A點(diǎn),乙從B點(diǎn)同時(shí)出發(fā)反向而行,6分鐘后兩人相遇,再過4分鐘甲到達(dá)B點(diǎn),又過8分鐘兩人再次相遇.甲、乙環(huán)行一周各需要多少分鐘?
解:甲乙合行一圈需要8+4=12分鐘。乙行6分鐘的路程,甲只需4分鐘。
所以乙行的12分鐘,甲需要1264=8分鐘,所以甲行一圈需要8+12=20分鐘。乙行一圈需要2046=30分鐘。
4. 甲、乙沿同一公路相向而行,甲的速度是乙的1.5倍.已知甲上午8點(diǎn)經(jīng)過郵局,乙上午10點(diǎn)經(jīng)過郵局,問甲、乙在中途何時(shí)相遇?
解:我們把乙行1小時(shí)的路程看作1份,
那么上午8時(shí),甲乙相距10-8=2份。
所以相遇時(shí),乙行了2(1+1.5)=0.8份,0.860=48分鐘,
所以在8點(diǎn)48分相遇。
5. 甲、乙兩人同時(shí)從山腳開始爬山,到達(dá)山頂后就立即下山.他們兩人下山的速度都是各自上山速度的2倍.甲到山頂時(shí),乙距山頂還有400米,甲回到山腳時(shí),乙剛好下到半山腰.求從山頂?shù)缴侥_的距離.
解:假設(shè)甲乙可以繼續(xù)上行,那么甲乙的速度比是(1+12):(1+1/22)=6:5
所以當(dāng)甲行到山頂時(shí),乙就行了5/6,所以從山頂?shù)缴侥_的距離是400(1-5/6)=2400米。
6. 一輛公共汽車載了一些乘客從起點(diǎn)出發(fā),在第一站下車的乘客是車上總數(shù)(含一名司機(jī)和兩名售票員)的1/7,第二站下車的乘客是車上總?cè)藬?shù)的1/6,.......第六站下車的乘客是車上總?cè)藬?shù)的1/2,再開車是車上就剩下1名乘客了.已知途中沒有人上車,問從起點(diǎn)出發(fā)時(shí),車上有多少名乘客?
解: 最后剩下1+1+2=4人。那么車上總?cè)藬?shù)是
4(1-1/2)(1-1/3)(1-1/6)(1-1/7)=28人
那么,起點(diǎn)時(shí)車上乘客有28-3=25人。
7. 有三塊草地,面積分別是4畝、8畝、10畝.草地上的草一樣厚,而且長得一樣快,第一塊草地可供24頭牛吃6周,第二塊草地可供36頭牛吃12周.問第三塊草地可供50頭牛吃幾周?
解法一:設(shè)每頭牛每周吃1份草。
第一塊草地4畝可供24頭牛吃6周,
說明每畝可供244=6頭牛吃6周。
第二塊草地8畝可共36頭牛吃12周,
說明每畝草地可供368=9/2頭牛吃12周。
所以,每畝草地每周要長(9/212-66)(12-6)=3份
所以,每畝原有草66-63=18份。
因此,第三塊草地原有草1810=180份,每周長310=30份。
所以,第三塊草地可供50頭牛吃180(50-30)=9周
解法二:設(shè)每頭牛每周吃1份草。我們把題目進(jìn)行變形。
有一塊1畝的草地,可供244=6頭牛吃6周,供368=9/2頭牛吃12周,那么可供5010=5頭牛吃多少周呢?
所以,每周草會(huì)長(9/212-66)(12-6)=3份,
原有草(6-3)6=18份,
那么就夠5頭牛吃18(5-3)=9周
8. B地在A,C兩地之間.甲從B地到A地去,出發(fā)后1小時(shí),乙從B地出發(fā)到C地,乙出發(fā)后1小時(shí),丙突然想起要通知甲、乙一件重要的事情,于是從B地出發(fā)騎車去追趕甲和乙.已知甲和乙的速度相等,丙的速度是甲、乙速度的3倍,為使丙從B地出發(fā)到最終趕回B地所用的'時(shí)間最少,丙應(yīng)當(dāng)先追甲再返回追乙,還是先追乙再返回追甲?
我的思考如下:
如果先追乙返回,時(shí)間是1(3-1)2=1小時(shí),
再追甲后返回,時(shí)間是3(3-1)2=3小時(shí),
共用去3+1=4小時(shí)
如果先追甲返回,時(shí)間是2(3-1)2=2小時(shí),
再追乙后返回,時(shí)間是3(3-1)2=3小時(shí),
共用去2+3=5小時(shí)
所以先追乙時(shí)間最少。故先追更后出發(fā)的。
9. 一把小刀售價(jià)3元.如果小明買了這把小刀,那么小明與小強(qiáng)的錢數(shù)之比是2:5;如果小強(qiáng)買了這把小刀,那么兩人的錢數(shù)之比是8:13.小明原來有多少元錢?
解法一:
小明買,小明剩下的錢是兩人剩下的錢的2(2+5)=2/7
如果小強(qiáng)買,那么小明的錢是兩人剩下的錢的8(8+13)=8/21
所以小明剩下的錢占他自己原來的錢的2/78/21=3/4。
所以小明原來的錢有3(1-3/4)=12元。
解法二:
如果小明買,
剩下(8+13)(2+5)2=6份,
用掉8-6=2份。
所以小明有328=12元。
10. 環(huán)形跑道周長是500米,甲、乙兩人從起點(diǎn)按順時(shí)針方向同時(shí)出發(fā).甲每分鐘跑120米,乙每分鐘跑100米,兩人都是每跑200米停下來休息1分鐘,那么甲第一次追上乙需要多少分鐘?
解:對于這個(gè)題目,我有兩個(gè)理解。
第一,甲乙出發(fā)后第一次停留在同一個(gè)地方。
那么就有當(dāng)甲行200米之后,再出發(fā)的時(shí)間是200120+1>2分鐘。
這時(shí),乙用2分鐘,也行了1002=200米的地方。
意思是說,乙行了2分鐘,就和在休息的甲在200米的地方停留。
第二,甲比乙多行500米而追上。
因?yàn)樾型曛,甲比乙多?00米,
那么就說明多休息500200=2100,即2次。
即甲追乙的路程是500+1002=700米
要追700米,甲需要走700(120-100)=35分
甲行35分鐘需要休息35120200-1=20分
所以共需35+20=55分
【小學(xué)數(shù)學(xué)應(yīng)用題及解析】相關(guān)文章:
小學(xué)數(shù)學(xué)應(yīng)用題解析04-06
小升初數(shù)學(xué)應(yīng)用題解析08-20
小學(xué)數(shù)學(xué)綜合訓(xùn)練應(yīng)用題及其解析04-06
數(shù)學(xué)綜合訓(xùn)練應(yīng)用題及解析04-07
小升初數(shù)學(xué)應(yīng)用題訓(xùn)練與解析10-16
數(shù)學(xué)小升初應(yīng)用題練習(xí)及解析11-11
數(shù)學(xué)綜合訓(xùn)練應(yīng)用題及解析素材04-06