初中數(shù)學(xué)知識要點(diǎn)
復(fù)習(xí)小升初數(shù)學(xué)的時候,有一些關(guān)鍵的考點(diǎn)知識我們一定要記住,掌握小升初數(shù)學(xué)中的這些重點(diǎn)知識,我們才能快速提高自己的成績。所以,接下來我們就要一起來學(xué)習(xí)一下。
小升初數(shù)學(xué)重點(diǎn)知識分析
1.抽屜原理
抽屜原則一:如果把(n+1)個物體放在n個抽屜里,那么必有一個抽屜中至少放有2個物體。
例:把4個物體放在3個抽屜里,也就是把4分解成三個整數(shù)的和,那么就有以下四種情況:
、4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1
觀察上面四種放物體的方式,我們會發(fā)現(xiàn)一個共同特點(diǎn):總有那么一個抽屜里有2個或多于2個物體,也就是說必有一個抽屜中至少放有2個物體。
抽屜原則二:如果把n個物體放在m個抽屜里,其中nm,那么必有一個抽屜至少有:
、賙=[n/m ]+1個物體:當(dāng)n不能被m整除時。
②k=n/m個物體:當(dāng)n能被m整除時。
理解知識點(diǎn):[X]表示不超過X的最大整數(shù)。
例[4.351]=4;[0.321]=0;[2.9999]=2;
關(guān)鍵問題:構(gòu)造物體和抽屜。也就是找到代表物體和抽屜的'量,而后依據(jù)抽屜原則進(jìn)行運(yùn)算。
2.定義新運(yùn)算
基本概念:定義一種新的運(yùn)算符號,這個新的運(yùn)算符號包含有多種基本(混合)運(yùn)算。
基本思路:嚴(yán)格按照新定義的運(yùn)算規(guī)則,把已知的數(shù)代入,轉(zhuǎn)化為加減乘除的運(yùn)算,然后按照基本運(yùn)算過程、規(guī)律進(jìn)行運(yùn)算。
關(guān)鍵問題:正確理解定義的運(yùn)算符號的意義。
注意事項(xiàng):①新的運(yùn)算不一定符合運(yùn)算規(guī)律,特別注意運(yùn)算順序。
②每個新定義的運(yùn)算符號只能在本題中使用。
3.數(shù)列求和
等差數(shù)列:在一列數(shù)中,任意相鄰兩個數(shù)的差是一定的,這樣的一列數(shù),就叫做等差數(shù)列。
基本概念:首項(xiàng):等差數(shù)列的第一個數(shù),一般用a1表示;
項(xiàng)數(shù):等差數(shù)列的所有數(shù)的個數(shù),一般用n表示;
公差:數(shù)列中任意相鄰兩個數(shù)的差,一般用d表示;
通項(xiàng):表示數(shù)列中每一個數(shù)的公式,一般用an表示;
數(shù)列的和:這一數(shù)列全部數(shù)字的和,一般用Sn表示。
基本思路:等差數(shù)列中涉及五個量:a1 ,an, d, n,sn,,通項(xiàng)公式中涉及四個量,如果己知其中三個,就可求出第四個;求和公式中涉及四個量,如果己知其中三個,就可以求這第四個。
基本公式:通項(xiàng)公式:an = a1+(n-1)d;
通項(xiàng)=首項(xiàng)+(項(xiàng)數(shù)一1) 公差;
數(shù)列和公式:sn,= (a1+ an)n
數(shù)列和=(首項(xiàng)+末項(xiàng))項(xiàng)數(shù)
項(xiàng)數(shù)公式:n= (an+ a1)
項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))公差+1;
公差公式:d =(an-a1))(n-1);
公差=(末項(xiàng)-首項(xiàng))(項(xiàng)數(shù)-1);
關(guān)鍵問題:確定已知量和未知量,確定使用的公式;
【初中數(shù)學(xué)知識要點(diǎn)】相關(guān)文章:
2017高考數(shù)學(xué)知識要點(diǎn)歸納11-16
初三上冊數(shù)學(xué)知識要點(diǎn)總結(jié)11-24
八年級必備的數(shù)學(xué)知識要點(diǎn)10-31
八年級數(shù)學(xué)知識要點(diǎn)總結(jié)10-31