- 相關(guān)推薦
《多邊形的內(nèi)角和》優(yōu)秀教學(xué)設(shè)計
作為一位不辭辛勞的人民教師,通常需要用到教學(xué)設(shè)計來輔助教學(xué),借助教學(xué)設(shè)計可以提高教學(xué)效率和教學(xué)質(zhì)量。我們該怎么去寫教學(xué)設(shè)計呢?以下是小編整理的《多邊形的內(nèi)角和》優(yōu)秀教學(xué)設(shè)計,希望對大家有所幫助。
學(xué)情分析:
學(xué)生已經(jīng)學(xué)過三角形的內(nèi)角和定理的知識基礎(chǔ),并且具備一定的化歸思想,但是推理能力和表達能力還稍稍有點欠缺。針對這種情況,我會引導(dǎo)學(xué)生利用分類、數(shù)形結(jié)合的思想,加強對數(shù)學(xué)知識的應(yīng)用,發(fā)展學(xué)生合情合理的推理能力和語言表達能力。
教學(xué)目標:
1.知識與技能:運用三角形內(nèi)角和定理來推證多邊形內(nèi)角和公式,掌握多邊形的內(nèi)角和的計算公式。
2.過程與方法:經(jīng)理探究多邊形內(nèi)角和計算方法的過程,培養(yǎng)學(xué)生的合作交流的意識。
3.情感態(tài)度與價值觀:感受數(shù)學(xué)化歸的思想和實際應(yīng)用的價值,同時培養(yǎng)學(xué)生善于發(fā)現(xiàn),積極探究,合作創(chuàng)新的學(xué)習(xí)態(tài)度。
教學(xué)重點:
多邊形的內(nèi)角和公式。
教學(xué)難點:
探索多邊形的內(nèi)角和定理的推導(dǎo)
教學(xué)過程:
一、創(chuàng)設(shè)情境,導(dǎo)入新課
1、請看:我身后的建筑物是什么?─水立方。我看到水立方時發(fā)現(xiàn)它的膜結(jié)構(gòu)的結(jié)合處都是多邊形,你們想知道這些多邊形的內(nèi)角和嗎?(多媒體展示)
這節(jié)課咱們一起來探究《多邊形的內(nèi)角和》。
二、合作交流,探究新知
1、多邊形的內(nèi)角和
問:要求內(nèi)角和你聯(lián)想到什么圖形的內(nèi)角和?(示三角形的內(nèi)角和定理)。如果兩個三角形能夠拼成四邊形,你能求出四邊形的內(nèi)角和是多少度呢?
預(yù)設(shè)回答:三角形的內(nèi)角和360°。四邊形的內(nèi)角和360°
知道四邊形的內(nèi)角和為360°,現(xiàn)在你能利用三角形的內(nèi)角和定理證明嗎?自主學(xué)習(xí)教材第34頁“動腦筋”
【教學(xué)說明】“解放學(xué)生的手,解放學(xué)生的大腦”,鼓勵學(xué)生積極參與合作交流,尋找多種圖形形式,深入全面轉(zhuǎn)化的本質(zhì)——將四邊形轉(zhuǎn)化為三角形問題來解決.
2、是否所有的多邊形的內(nèi)角和都可以“轉(zhuǎn)化”為兩個三角形的內(nèi)角和來求得呢?如何“轉(zhuǎn)化”?
預(yù)設(shè)回答:能,可以引對角線,將多邊形分成幾個三角形。
讓學(xué)生合作交流討論,展示探究成果。教材第35頁“探究”
示圖,取多邊形上任意一個頂點,連接除相鄰的兩點,則多邊形的內(nèi)角和可轉(zhuǎn)化為三角形內(nèi)角和之間的關(guān)系,
多邊形邊數(shù)可分成三角形的個數(shù)多邊形的內(nèi)角和56 7┅┅┅┅n邊形n
n邊形有幾個內(nèi)角?是否可以“轉(zhuǎn)化”為多個三角形的角來求得呢?如何“轉(zhuǎn)化”?
預(yù)設(shè)回答:有n個內(nèi)角,可以轉(zhuǎn)化多個三角形來求,n邊形可以引n-3條對角線,即有n-2個三角形。所有n邊形的內(nèi)角和等于(n-2)x180°
【教學(xué)說明】通過五邊形、六邊形、七邊形、八邊形等特殊多邊形內(nèi)角和的探索,讓學(xué)生從特殊到一般歸納總結(jié)出多邊形內(nèi)角和公式,體會數(shù)形間的聯(lián)系,感受從特殊到一般的數(shù)學(xué)推理過程和數(shù)學(xué)思考方法.
例:教材第36頁例1
【教學(xué)說明】讓學(xué)生利用多邊形的內(nèi)角和公式求一個多邊形的內(nèi)角和或它的邊數(shù),加深知識的理解與運用.
三、課堂演練
1、若從一個多邊形的一個頂點出發(fā),最多可以引10條對角線,則它是()
A.十三邊形B.十二邊形
C.十一邊形D.十邊形
2、十二邊形的內(nèi)角和為,已知一個多邊形的內(nèi)角和是1260°,則這個多邊形的邊數(shù)是。
【教學(xué)說明】由學(xué)生自主完成,教師及時了解學(xué)生的學(xué)習(xí)效果,讓學(xué)生經(jīng)歷運用知識解決問題的過程.對需要幫助的學(xué)生及時點撥并加以強化.在完成上述題目后,讓學(xué)生完成練習(xí)冊中本課時的對應(yīng)訓(xùn)練部分.
四、課時小結(jié)
1、這節(jié)課你有什么新的收獲?
五、布置作業(yè):
教材第36頁練習(xí)1、2題。
六、板書設(shè)計多邊形的內(nèi)角和n邊形內(nèi)角和等于(n-2)×180°。
多邊形的內(nèi)角和是180的倍數(shù);
邊數(shù)越多,內(nèi)角和就越大;
每增加一條邊,內(nèi)角和就增加180度。
拓展:《多邊形的內(nèi)角和》教學(xué)反思
本節(jié)課從復(fù)習(xí)舊知入手,在引課時提問三角形的相關(guān)知識,讓學(xué)生在思想上對本節(jié)課產(chǎn)生興趣,并且會覺得知識點不是很難,提高學(xué)生的學(xué)習(xí)興趣,同時加強了數(shù)學(xué)與實際生活的聯(lián)系,讓學(xué)生感到數(shù)學(xué)離自己很近,激發(fā)了學(xué)生的求知欲,創(chuàng)設(shè)了良好的教學(xué)氛圍。
其次注重讓學(xué)生在學(xué)習(xí)活動中領(lǐng)悟數(shù)學(xué)思想方法。數(shù)學(xué)的思想方法比有限的數(shù)學(xué)知識更為重要。學(xué)生在探索多邊形內(nèi)角和的過程中先把多邊形轉(zhuǎn)化成三角形.進而求出內(nèi)角和,這體現(xiàn)了由未知轉(zhuǎn)化為已知的思想。特別是在課堂教學(xué)中適時的利用問題加以引導(dǎo),使學(xué)生領(lǐng)會數(shù)學(xué)思想方法,真正理解和掌握數(shù)學(xué)的知識、技能,增強空間觀念及數(shù)學(xué)思考能力培養(yǎng),并獲得數(shù)學(xué)活動經(jīng)驗。同時,恰當(dāng)?shù)氖褂谜n件擴大了課堂容量,使課堂教學(xué)的深度和廣度都有所提高。同時也加大了練習(xí)量,有助于學(xué)生知識可鞏固和提高。
整節(jié)課學(xué)生的情緒飽滿,思維活躍,在教師適當(dāng)?shù)囊龑?dǎo)下,學(xué)生能夠合作交流和自主探究,成功的探索出了多邊形的內(nèi)角和公式,較好的完成了本節(jié)課的教學(xué)目標。
不足之處:
1.本節(jié)課給學(xué)生提供的探究思考與交流的時間比較充足,但展示交流的機會不夠充分,并且個別學(xué)生沒有很好的融入課堂,游離于課本之外。
2.本節(jié)課學(xué)生小組活動的準備、具體實施、歸納交流、評價等環(huán)節(jié)設(shè)計不夠完善。
3、練習(xí)不夠多樣化。
【《多邊形的內(nèi)角和》優(yōu)秀教學(xué)設(shè)計】相關(guān)文章:
多邊形的內(nèi)角和教學(xué)設(shè)計06-06
初中數(shù)學(xué)競賽課《多邊形內(nèi)角和》的教學(xué)設(shè)計02-11
初中數(shù)學(xué) 多邊形的內(nèi)角和 教學(xué)設(shè)計示例2 教案05-26
《多邊形的內(nèi)角和》公開課教案06-15
《用多邊形工具畫圖》優(yōu)秀教學(xué)設(shè)計03-01
《三角形內(nèi)角和》教學(xué)設(shè)計04-12
三角形內(nèi)角和教學(xué)設(shè)計08-15