- 相關(guān)推薦
高考數(shù)學(xué)必背知識(shí)點(diǎn)拋物線
漫長(zhǎng)的學(xué)習(xí)生涯中,說到知識(shí)點(diǎn),大家是不是都習(xí)慣性的重視?知識(shí)點(diǎn)就是一些常考的內(nèi)容,或者考試經(jīng)常出題的地方。還在為沒有系統(tǒng)的知識(shí)點(diǎn)而發(fā)愁嗎?以下是小編精心整理的高考數(shù)學(xué)必背知識(shí)點(diǎn)拋物線,僅供參考,歡迎大家閱讀。
高考數(shù)學(xué)必背知識(shí)點(diǎn)拋物線 1
拋物線:y = ax *+ bx + c
就是y等于ax 的平方加上 bx再加上 c
a >0時(shí)開口向上
a< 0時(shí)開口向下
c = 0時(shí)拋物線經(jīng)過原點(diǎn)
b = 0時(shí)拋物線對(duì)稱軸為y軸
還有頂點(diǎn)式y(tǒng) = a(x+h)* + k
就是y等于a乘以(x+h)的平方+k
-h是頂點(diǎn)坐標(biāo)的x
k是頂點(diǎn)坐標(biāo)的y
一般用于求最大值與最小值
拋物線標(biāo)準(zhǔn)方程:y^2=2px
它表示拋物線的焦點(diǎn)在x的正半軸上,焦點(diǎn)坐標(biāo)為(p/2,0) 準(zhǔn)線方程為x=-p/2
由于拋物線的焦點(diǎn)可在任意半軸,故共有標(biāo)準(zhǔn)方程y^2=2px y^2=-2px x^2=2py x^2=-2py
關(guān)于圓的公式
體積=4/3(pi)(r^3)
面積=(pi)(r^2)
周長(zhǎng)=2(pi)r
圓的標(biāo)準(zhǔn)方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標(biāo)
圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
(一)橢圓周長(zhǎng)計(jì)算公式
橢圓周長(zhǎng)公式:L=2πb+4(a-b)
橢圓周長(zhǎng)定理:橢圓的周長(zhǎng)等于該橢圓短半軸長(zhǎng)為半徑的圓周長(zhǎng)(2πb)加上四倍的該橢圓長(zhǎng)半軸長(zhǎng)(a)與短半軸長(zhǎng)(b)的`差。
(二)橢圓面積計(jì)算公式
橢圓面積公式: S=πab
橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長(zhǎng)半軸長(zhǎng)(a)與短半軸長(zhǎng)(b)的乘積。
以上橢圓周長(zhǎng)、面積公式中雖然沒有出現(xiàn)橢圓周率T,但這兩個(gè)公式都是通過橢圓周率T推導(dǎo)演變而來。常數(shù)為體,公式為用。
橢圓形物體 體積計(jì)算公式橢圓 的 長(zhǎng)半徑*短半徑*PAI*高
高考數(shù)學(xué)必背知識(shí)點(diǎn)拋物線 2
1. 拋物線定義:
平面內(nèi)與一個(gè)定點(diǎn)和一條直線的距離相等的點(diǎn)的軌跡叫做拋物線,點(diǎn)叫做拋物線的焦點(diǎn),直線叫做拋物線的準(zhǔn)線,定點(diǎn)不在定直線上。它與橢圓、雙曲線的第二定義相仿,僅比值(離心率e)不同,當(dāng)e=1時(shí)為拋物線,當(dāng)0
2. 拋物線的標(biāo)準(zhǔn)方程有四種形式,參數(shù)的幾何意義,是焦點(diǎn)到準(zhǔn)線的距離,掌握不同形式方程的幾何性質(zhì)(如下表):其中為拋物線上任一點(diǎn)。
3. 對(duì)于拋物線上的點(diǎn)的坐標(biāo)可設(shè)為,以簡(jiǎn)化運(yùn)算。
4. 拋物線的焦點(diǎn)弦:設(shè)過拋物線的焦點(diǎn)的直線與拋物線交于,直線與的斜率分別為,直線的傾斜角為,則有解。
說明:
1. 求拋物線方程時(shí),若由已知條件可知曲線是拋物線一般用待定系數(shù)法;若由已知條件可知曲線的動(dòng)點(diǎn)的規(guī)律一般用軌跡法。
2. 凡涉及拋物線的弦長(zhǎng)、弦的中點(diǎn)、弦的斜率問題時(shí)要注意利用韋達(dá)定理,能避免求交點(diǎn)坐標(biāo)的復(fù)雜運(yùn)算。
3. 解決焦點(diǎn)弦問題時(shí),拋物線的定義有廣泛的應(yīng)用,而且還應(yīng)注意焦點(diǎn)弦的幾何性質(zhì)。
拋物線的焦點(diǎn)弦的性質(zhì):
關(guān)于拋物線的`幾個(gè)重要結(jié)論:
(1)弦長(zhǎng)公式同橢圓.
(2)對(duì)于拋物線y2=2px(p>0),我們有P(x0,y0)在拋物線內(nèi)部P(x0,y0)在拋物線外部
(3)拋物線y2=2px上的點(diǎn)P(x1,y1)的切線方程是拋物線y2=2px(p>,高二;0)的斜率為k的切線方程是y=kx+
(4)拋物線y2=2px外一點(diǎn)P(x0,y0)的切點(diǎn)弦方程是
(5)過拋物線y2=2px上兩點(diǎn)的兩條切線交于點(diǎn)M(x0,y0),則
(6)自拋物線外一點(diǎn)P作兩條切線,切點(diǎn)為A,B,若焦點(diǎn)為F, 又若切線PA⊥PB,則AB必過拋物線焦點(diǎn)F.
利用拋物線的幾何性質(zhì)解題的方法:
根據(jù)拋物線定義得出拋物線一個(gè)非常重要的幾何性質(zhì):拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離.利用拋物線的幾何性質(zhì),可以進(jìn)行求值、圖形的判斷及有關(guān)證明.
拋物線中定點(diǎn)問題的解決方法:
在高考中一般以填空題或選擇題的形式考查拋物線的定義、標(biāo)準(zhǔn)方程以及幾何性質(zhì)等基礎(chǔ)知識(shí),在解答題中常常將解析幾何中的方法、技巧與思想集于一身,與其他圓錐曲線或其他章節(jié)的內(nèi)容相結(jié)合,考查綜合分析問題的能力,而與拋物線有關(guān)的定值及最值問題是一個(gè)很好的切人點(diǎn),充分利用點(diǎn)在拋物線上及拋物線方程的特點(diǎn)是解決此類題型的關(guān)鍵,在求最值時(shí)經(jīng)常運(yùn)用基本不等式、判別式以及轉(zhuǎn)化為函數(shù)最值等方法。
利用焦點(diǎn)弦求值:
利用拋物線及焦半徑的定義,結(jié)合焦點(diǎn)弦的表示,進(jìn)行有關(guān)的計(jì)算或求值。
拋物線中的幾何證明方法:
利用拋物線的定義及幾何性質(zhì)、焦點(diǎn)弦等進(jìn)行有關(guān)的幾何證明是拋物線中的一種常見題型,證明時(shí)注意利用好圖形,并做好轉(zhuǎn)化代換。
【高考數(shù)學(xué)必背知識(shí)點(diǎn)拋物線】相關(guān)文章:
高考數(shù)學(xué)必背知識(shí)點(diǎn)11-15
文科高考數(shù)學(xué)必背知識(shí)點(diǎn)01-27
高考?xì)v史必背的知識(shí)點(diǎn)05-24
政治高考必背知識(shí)點(diǎn)11-24
高考政治必背知識(shí)點(diǎn)11-24
高考化學(xué)必背知識(shí)點(diǎn)11-24
生物高考必背知識(shí)點(diǎn)11-25