[精]初一下冊數(shù)學知識點
在平日的學習中,不管我們學什么,都需要掌握一些知識點,知識點是指某個模塊知識的重點、核心內(nèi)容、關鍵部分。你知道哪些知識點是真正對我們有幫助的嗎?以下是小編精心整理的初一下冊數(shù)學知識點,僅供參考,希望能夠幫助到大家。
初一下冊數(shù)學知識點1
1.有理數(shù):
(1)凡能寫成形式的數(shù),都是有理數(shù)。正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù)。注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);π不是有理數(shù);
(2)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;
2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線。
3.相反數(shù):
(1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的.相反數(shù)還是0;
(2)注意:a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;
4.絕對值:
(1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;
(2)絕對值可表示為:
絕對值的問題經(jīng)常分類討論;
(3)a|是重要的非負數(shù),即|a|≥0;注意:|a|?|b|=|a?b|,5.有理數(shù)比大小:(1)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠比0大,負數(shù)永遠比0小;(3)正數(shù)大于一切負數(shù);(4)兩個負數(shù)比大小,絕對值大的反而小;(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.
初一下冊數(shù)學知識點2
一、目標與要求
1.了解全面調(diào)查的概念;會設計簡單的調(diào)查問卷,收集數(shù)據(jù);掌握劃記法,會用表格整理數(shù)據(jù);會畫扇形統(tǒng)計圖,能用統(tǒng)計圖描述數(shù)據(jù);經(jīng)歷統(tǒng)計調(diào)查的一般過程,體驗統(tǒng)計與生活的關系。
2.經(jīng)歷數(shù)據(jù)的收集、整理和分析的模擬過程,了解抽樣調(diào)查、樣本、個體與總體等統(tǒng)計概念;學會從樣本中分析、歸納出較為正確的結論,增強用統(tǒng)計方法解決問題的意識。
3.理解頻數(shù)、頻數(shù)分布的意義,學會制作頻數(shù)分布表;學會畫頻數(shù)分布直方圖和頻數(shù)折線圖。
二、重點
學會畫頻數(shù)分布直方圖;
分層抽樣的方法和樣本的.分析、歸納;
抽樣調(diào)查、樣本、總體等概念以及用樣本估計總體的思想;
全面調(diào)查的過程(數(shù)據(jù)的收集、整理、描述)。
三、難點
繪制扇形統(tǒng)計圖;
樣本的抽取;
分層抽樣方案的制定;
確定組距和組數(shù)。
初一下冊數(shù)學知識點3
一、目標與要求
1.解有序數(shù)對的應用意義,了解平面上確定點的常用方法。
2.培養(yǎng)學生用數(shù)學的意識,激發(fā)學生的`學習興趣。
3.掌握坐標變化與圖形平移的關系;能利用點的平移規(guī)律將平面圖形進行平移;會根據(jù)圖形上點的坐標的變化,來判定圖形的移動過程。
4.發(fā)展學生的形象思維能力,和數(shù)形結合的意識。
5.坐標表示平移體現(xiàn)了平面直角坐標系在數(shù)學中的應用。
二、重點
掌握坐標變化與圖形平移的關系;
有序數(shù)對及平面內(nèi)確定點的方法。
三、難點
利用坐標變化與圖形平移的關系解決實際問題;
利用有序數(shù)對表示平面內(nèi)的點。
初一下冊數(shù)學知識點4
初一下冊知識點總結
1.同底數(shù)冪的乘法:am?an=am+n ,底數(shù)不變,指數(shù)相加。
2.同底數(shù)冪的除法:am÷an=am-n ,底數(shù)不變,指數(shù)相減。
3.冪的乘方與積的乘方:(am)n=amn ,底數(shù)不變,指數(shù)相乘; (ab)n=anbn ,積的乘方等于各因式乘方的積。
4.零指數(shù)與負指數(shù)公式:
(1)a0=1 (a≠0); a-n= ,(a≠0)。 注意:00,0-2無意義。
(2)有了負指數(shù),可用科學記數(shù)法記錄小于1的數(shù),例如:0.0000201=2.01×10-5。
5.(1)平方差公式:(a+b)(a-b)= a2-b2,兩個數(shù)的和與這兩個數(shù)的差的積等于這兩個數(shù)的平方差;
(2)完全平方公式:
① (a+b)2=a2+2ab+b2, 兩個數(shù)和的平方,等于它們的平方和,加上它們的積的2倍;
、 (a-b)2=a2-2ab+b2 , 兩個數(shù)差的平方,等于它們的平方和,減去它們的積的2倍;
※ ③ (a+b-c)2=a2+b2+c2+2ab-2ac-2bc
6.配方:
(1)若二次三項式x2+px+q是完全平方式,則有關系式: ;
※ (2)二次三項式ax2+bx+c經(jīng)過配方,總可以變?yōu)閍(x-h)2+k的形式。
注意:當x=h時,可求出ax2+bx+c的最大(或最小)值k。
※(3)注意: 。
7.單項式的系數(shù)與次數(shù):單項式中不為零的.數(shù)字因數(shù),叫單項式的數(shù)字系數(shù),簡稱單項式的系數(shù);
系數(shù)不為零時,單項式中所有字母指數(shù)的和,叫單項式的次數(shù)。
8.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;
多項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù);
注意:(若a、b、c、p、q是常數(shù))ax2+bx+c和x2+px+q是常見的兩個二次三項式。
9.同類項:所含字母相同,并且相同字母的指數(shù)也相同的單項式是同類項。
10.合并同類項法則:系數(shù)相加,字母與字母的指數(shù)不變。
11.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號。
注意:多項式計算的最后結果一般應該進行升冪(或降冪)排列。
平面幾何部分
1、補角重要性質(zhì):同角或等角的補角相等.
余角重要性質(zhì):同角或等角的余角相等.
2、①直線公理:過兩點有且只有一條直線.
線段公理:兩點之間線段最短.
、谟嘘P垂線的定理:(1)過一點有且只有一條直線與已知直線垂直;
(2)直線外一點與直線上各點連結的所有線段中,垂線段最短.
比例尺:比例尺1:m中,1表示圖上距離,m表示實際距離,若圖上1厘米,表示實際距離m厘米.
3、三角形的內(nèi)角和等于180
三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和
三角形的一個外角大于與它不相鄰的任何一個內(nèi)角
4、n邊形的對角線公式:
各個角都相等,各條邊都相等的多邊形叫做正多邊形
5、n邊形的內(nèi)角和公式:180(n-2); 多邊形的外角和等于360
6、判斷三條線段能否組成三角形:
、賏+b>c(a b為最短的兩條線段)②a-b
7、第三邊取值范圍:
a-b< c
8、對應周長取值范圍:
若兩邊分別為a,b則周長的取值范圍是 2a
如兩邊分別為5和7則周長的取值范圍是 14
9、相關命題:
(1) 三角形中最多有1個直角或鈍角,最多有3個銳角,最少有2個銳角。
(2) 銳角三角形中最大的銳角的取值范圍是60≤X<90 。最大銳角不小于60度。
(3)任意一個三角形兩角平分線的夾角=90+第三角的一半。
(4) 鈍角三角形有兩條高在外部。
(5) 全等圖形的大小(面積、周長)、形狀都相同。
(6) 面積相等的兩個三角形不一定是全等圖形。
(7) 三角形具有穩(wěn)定性。
(8) 角平分線到角的兩邊距離相等。
(9)有一個角是60的等腰三角形是等邊三角形。
初一下冊數(shù)學知識點5
一、選擇題(每小題4分,共12分)
1.計算(-x)2x3的結果是()
A.x5 B.-x5 C.x6 D.-x6
2.下列各式計算正確的個數(shù)是()
、賦4②x3x3=2x6 ;③a5+a7 =a12;
、(-a)2(-a2)=-a4;⑤a4a3=a7.
A.1B.2C.3D.4
3.下列各式能用同底數(shù)冪乘法法則進行計算的是()
A.(x+y)2(x-y)2B.(x+y)2(-x-y)
C.(x+y)2+2 (x+y)2D.(x-y)2(-x-y)
二、填空題(每小題4分,共12分)
4.(20xx天津中考)計算aa6的`結果等于.
5.若2n-224=64,則n= .
6.已知2x2x8=213,則x=.
三、解答題(共26分)
7.(8分)計算:(1)(- 3) 3(-3)4(-3).
(2)a3a2-a(-a)2a2.
(3)(2m-n)4(n-2m)3(2m-n)6.
(4)yyn+ 1-2yny2.
8.(8分)已知ax=5,ay=4,求下列各式的值:
(1)ax+2. (2)ax+y+1.
【拓展延伸】
9.(10分)已知2a=3,2b=6, 2c=12,試確定a,b,c之間的關系.
答案解析
1.【解析】選A.(-x)2x3=x2x3=x2+3=x5.
2.【解析】選B.x4x2=x4+2=x6,故①錯誤;x3x3=x3+3=x6,故②錯誤;a5與a7不是同類項,不能合并,故③錯誤;(-a)2(- a2)=a2(-a2)=-a2a2=-a2+2=-a4,故④正確;a4a3=a4+3=a7,故⑤正確.
3.【解 析】選B.A,D選項底數(shù)不相同,不是同底數(shù)冪的乘法,C選項不是乘法;(x+y)2(-x-y)=-(x+y)2(x+y)=-(x+y)3.
4.【解析】根據(jù)同底數(shù)冪的乘法法 則同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加,所以aa 6=a1+6=a7.
答案:a7
5.【解析】因為 2n-224=2n-2+4=2n+2,64=26,
所以2n+2=26,即n+2=6,解得n=4.
答案:4
6.【解析】因為2x2x8=2x2x23=2x+x+3 ,
所以x+x+3=13,解得x=5.
答案:5
7.【解析】(1)(-3)3(-3)4(-3)=(-3)3+4+1=(-3)8=38.
(2)a3a2-a(-a)2a2=a3+2-aa2a2
=a5-a5=0.
(3)(2m-n)4(n-2m)3(2m-n)6
=(n-2m)4(n-2m)3(n-2m)6
=(n-2m)4+3+6=(n-2m)13.
(4)yyn+1-2yny2=yn+1+1-2yn+2
=yn+2-2yn+2=(1-2)yn+2
=-yn+2.
8.【解析】(1)ax+2=axa2=5a2.
(2)ax+y+1=axaya=54a=20a.
9.【解析】方法一:因為12 =322=62,
所以2c=12=322=2a22=2a+2,
即c=a+2,①
又因為2c=12=62=2b2=2b+1,
所以c=b+1,②
①+②得2c=a+b+3.
方法二:因為2b=6=32=2a2=2a+1,
所以b=a+1,①
又因為2c=12=62=2b2=2b+1,
所以c=b+1,②
、-②得2b=a+c.
初一下冊數(shù)學知識點6
一個正數(shù)如果有平方根,那么必定有兩個,它們互為相反數(shù)。顯然,如果我們知道了這兩個平方根的一個,那么就可以及時的根據(jù)相反數(shù)的概念得到它的另一個平方根。
如果一個正數(shù)x的平方等于a,即x2=a,那么這個正數(shù)x叫做a的算術平方根。a的算術平方根記為,讀作根號a,a叫做被開方數(shù)。
規(guī)定:0的平方根是0。
負數(shù)在實數(shù)范圍內(nèi)不能開平方,只有在復數(shù)范圍內(nèi),才可以開平方根。例如:-1的平方根為1i,-9的平方根為3i。
平方根包含了算術平方根,算術平方根是平方根中的一種。
任何復數(shù)都有平方根。
算術平方根為:a=a(a為非負數(shù))
被開方數(shù)是乘方運算里的.冪。
求平方根可通過逆運算平方來求。
開平方:求一個非負數(shù)a的平方根的運算叫做開平方,其中a叫做被開方數(shù)。
若x的平方等于a,那么x就叫做a的平方根,即a=x(a為非負數(shù))
初一下冊數(shù)學知識點7
用數(shù)軸表示數(shù),右邊的'數(shù)總比左邊的數(shù)大:正數(shù)>0>負數(shù)
(1)作差比較法:
若a-b>0,則a>b
若a-b=0,則a=b
若a-b<0,則a
(2)作商比較法:
設b>0,有若a/b>1,則a>b;若a/b=1,則a=b;若a/b<1,則a
當b<0,a<0時:若a>1,則ab。
(4)倒數(shù)比較法
若a>b>0,則1/a<1/b
若a1/b
若a<0
(5)絕對值比較法:
若a<0、b<0,則丨a丨>丨b丨,ab。
(6)兩數(shù)平方法:如實數(shù)與數(shù)軸上的點一一對應。平面直角坐標系中的點與有序?qū)崝?shù)對之間一一對應。
初一下冊數(shù)學知識點8
一、目標與要求
1。感受生活中存在著大量的不等關系,了解不等式和一元一次不等式的意義,通過解決簡單的實際問題,使學生自發(fā)地尋找不等式的解,會把不等式的解集正確地表示到數(shù)軸上;
2。經(jīng)歷由具體實例建立不等模型的過程,經(jīng)歷探究不等式解與解集的不同意義的過程,滲透數(shù)形結合思想;
3。通過對不等式、不等式解與解集的探究,引導學生在獨立思考的基礎上積極參與對數(shù)學問題的討論,培養(yǎng)他們的合作交流意識;讓學生充分體會到生活中處處有數(shù)學,并能將它們應用到生活的各個領域。
三、重點
理解并掌握不等式的性質(zhì);
正確運用不等式的性質(zhì);
建立方程解決實際問題,會解ax+b=cx+d類型的一元一次方程;
尋找實際問題中的不等關系,建立數(shù)學模型;
一元一次不等式組的解集和解法。
四、難點
一元一次不等式組解集的理解;
弄清列不等式解決實際問題的思想方法,用去括號法解一元一次不等式;
正確理解不等式、不等式解與解集的意義,把不等式的解集正確地表示到數(shù)軸上。
五、知識點、概念總結
1。不等式:用符號,,,表示大小關系的式子叫做不等式。
2。不等式分類:不等式分為嚴格不等式與非嚴格不等式。
一般地,用純粹的大于號、小于號,連接的不等式稱為嚴格不等式,用不小于號(大于或等于號)、不大于號(小于或等于號),連接的不等式稱為非嚴格不等式,或稱廣義不等式。
3。不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。
4。不等式的解集:一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
5。不等式解集的表示方法:
。1)用不等式表示:一般的,一個含未知數(shù)的不等式有無數(shù)個解,其解集是一個范圍,這個范圍可用最簡單的不等式表達出來,例如:x—12的'解集是x3
(2)用數(shù)軸表示:不等式的解集可以在數(shù)軸上直觀地表示出來,形象地說明不等式有無限多個解,用數(shù)軸表示不等式的解集要注意兩點:一是定邊界線;二是定方向。
6。解不等式可遵循的一些同解原理
。1)不等式F(x) G(x)與不等式 G(x)F(x)同解。
。2)如果不等式F(x) G(x)的定義域被解析式H(x)的定義域所包含,那么不等式 F(x) G(x)與不等式H(x)+F(x)
。3)如果不等式F(x) G(x)的定義域被解析式H(x)的定義域所包含,并且H(x)0,那么不等式F(x) G(x)與不等式H(x)F(x)0,那么不等式F(x) G(x)與不等式H(x)F(x)H(x)G(x)同解。
7。不等式的性質(zhì):
。1)如果xy,那么yy;(對稱性)
。2)如果xy,y那么x(傳遞性)
(3)如果xy,而z為任意實數(shù)或整式,那么x+z(加法則)
(4)如果xy,z0,那么xz如果xy,z0,那么xz
。5)如果xy,z0,那么xzy如果xy,z0,那么xz
。6)如果xy,mn,那么x+my+n(充分不必要條件)
。7)如果x0,m0,那么xmyn
。8)如果x0,那么x的n次冪y的n次冪(n為正數(shù))
8。一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。
9。解一元一次不等式的一般順序:
。1)去分母 (運用不等式性質(zhì)2、3)
。2)去括號
。3)移項 (運用不等式性質(zhì)1)
。4)合并同類項
(5)將未知數(shù)的系數(shù)化為1 (運用不等式性質(zhì)2、3)
(6)有些時候需要在數(shù)軸上表示不等式的解集
10。 一元一次不等式與一次函數(shù)的綜合運用:
一般先求出函數(shù)表達式,再化簡不等式求解。
11。一元一次不等式組:一般地,關于同一未知數(shù)的幾個一元一次不等式合在一一起,就組成
了一個一元一次不等式組。
12。解一元一次不等式組的步驟:
。1) 求出每個不等式的解集;
(2) 求出每個不等式的解集的公共部分;(一般利用數(shù)軸)
。3) 用代數(shù)符號語言來表示公共部分。(也可以說成是下結論)
13。解不等式的訣竅
。1)大于大于取大的(大大大);
例如:X—1,X2 ,不等式組的解集是X2
(2)小于小于取小的(小小。;
例如:X—4,X—6,不等式組的解集是X—6
(3)大于小于交叉取中間;
。4)無公共部分分開無解了;
14。解不等式組的口訣
(1)同大取大
例如,x2,x3 ,不等式組的解集是X3
。2)同小取小
例如,x2,x3 ,不等式組的解集是X2
。3)大小小大中間找
例如,x2,x1,不等式組的解集是1
。4)大大小小不用找
例如,x2,x3,不等式組無解
15。應用不等式組解決實際問題的步驟
(1)審清題意
。2)設未知數(shù),根據(jù)所設未知數(shù)列出不等式組
。3)解不等式組
(4)由不等式組的解確立實際問題的解
。5)作答
16。用不等式組解決實際問題:其公共解不一定就為實際問題的解,所以需結合生活實際具體分析,最后確定結果。
初一下冊數(shù)學知識點9
一、將考試的一些錯誤信息進行分類
、龠z憾之錯
就是分明會做,反而做錯了的題。
比如說,“審題之錯”是由于審題出現(xiàn)失誤,看錯數(shù)字等造成的;“計算之錯”是由于計算出現(xiàn)差錯造成的;“抄寫之錯”是在草稿紙上做對了,往試卷上一抄就寫錯了、漏掉了;“表達之錯”是自己答案正確但與題目要求的表達不一致,如單位混用等。
、谒品侵e
理解的不夠透徹,應用得不夠自如;回答不嚴密、不完整;第一遍做對了,一改反而改錯了;或第一遍做錯了,后來又改對了;一道題做到一半做不下去了等等。
、蹮o為之錯
由于不會,因而答錯了或猜的,或者根本沒有答。這是無思路、不理解,更談不上應用的問題。
一般情況下,這三類錯誤的比例是2:7:1,你也可以自己分析一下自己的三類錯誤比例。得出結論后,就知道問題出在哪里,要針對性進行解決。
二、出現(xiàn)這些錯誤情況的原因
、俦粍訉W習
許多同學有很強的依賴或懶惰的心理,只是被動的跟隨老師的慣性運轉(zhuǎn),沒有掌握學習的主動權。表現(xiàn)在不定計劃、坐等上課,課前沒有預習,對老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所有內(nèi)容。
、趯W不得法
老師上課一般都要講清知識點的來龍去脈,剖析概念的內(nèi)涵,分析重點難點,突出思想方法。而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結、尋找知識間的聯(lián)系,只是趕作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。
③不重視基礎
一些“自我感覺良好”的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經(jīng)常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高騖遠,重“量”輕“質(zhì)”,陷入題海。到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。
、軘(shù)學思維不夠?qū)拸V
有的同學不會對知識的深度、廣度,以及各章節(jié)進行總結,并融會貫通,不會“多角度”考慮,不會“概括”、“類比”、“聯(lián)想”、“抽象”等各種方法與思維。
⑤死記硬背,不能遷移知識
初中數(shù)學主要是以形象、通俗的語言方式進行表達。有些同學建立了統(tǒng)一的思維模式,就只能機械的進行操作,形成一種定勢方式。而不會加強知識的遷移,對一道題,要盡可能多想解法,多開動“腦筋”,使思維“活”起來。對一些相近的`題,要善于總結,形成“一法多題”。
三、科學的學習方法
學生僅僅想學是不夠的,還必須“會學”,要講究科學的學習方法,提高學習效率,才能變被動為主動。
①培養(yǎng)良好的學習習慣
良好的學習習慣包括制定計劃、課前自學、專心上課、及時復習、獨立作業(yè)、解決疑難、系統(tǒng)小結和課外學習幾個方面。
制定計劃明確學習目的。合理的學習計劃是推動主動學習和克服困難的內(nèi)在動力。既有長遠打算,又有短期安排,執(zhí)行過程中嚴格要求自己,磨煉學習意志。
課前預習是取得較好學習效果的基礎。預習不能搞走過場,要講究質(zhì)量,力爭在課前把教材弄懂,上課著重聽老師講思路,把握重點,突破難點,盡可能把問題解決在課堂上。
上課是理解和掌握基本知識、基本技能和基本方法的關鍵環(huán)節(jié)。上課專心聽重點難點,把老師補充的內(nèi)容記錄下來,而不是全抄全錄,顧此失彼。
及時復習是提高效率學習的重要一環(huán)。通過反復閱讀教材,強化對基本概念知識體系的理解與記憶,將所學的新知識與有關舊知識聯(lián)系起來,進行分析比較。
獨立作業(yè)是通過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所有新知識的理解和對新技能的掌握過程。
解決疑難是指對獨立完成作業(yè)過程中暴露出來對知識理解的錯誤,或由于思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程。做錯的作業(yè)要再做一遍,對錯誤的地方?jīng)]弄清楚要反復思考。
系統(tǒng)小結是通過積極思考,達到全面系統(tǒng)深刻地掌握知識和發(fā)展認識能力的重要環(huán)節(jié)。小結要在系統(tǒng)復習的基礎上以教材為依據(jù),參照筆記與資料,通過分析、綜合、類比、概括,提示知識間的內(nèi)在聯(lián)系,以達到所有知識融會貫通的目的。
課外學習包括閱讀課外書籍與報刊,課外學習是課內(nèi)學習的補充和繼續(xù),它不僅能豐富同學們的文化科學知識,加深和鞏固課內(nèi)所學的知識,而且能夠滿足和發(fā)展我們的興趣愛好,培養(yǎng)獨立學習和工作的能力。
、谥刃驖u進,防止急躁
由于學生年齡較小,閱歷有限,有些學生容易急躁,有的同學貪多求快,有的同學想靠幾天“沖刺”一蹴而就,有的取得一點成績便洋洋自得,遇到挫折又一蹶不振。學習是一個長期的鞏固舊知識、發(fā)現(xiàn)新知識的積累過程,決非一朝一夕可以完成。學習是一項循序漸進、長期積累的過程,要有恒心、決心,有一些拼搏的心,要防止急躁心里,才能取得最后的成功。
、垩芯繉W科特點,尋找最佳學習方法
數(shù)學學科擔負著培養(yǎng)學生運算能力、邏輯思維能力、空間想象能力,以及運用所學知識分析問題、解決問題的能力的重任。它的特點是具有高度的抽象性、邏輯性和廣泛性,對能力要求較高。具體尋找方法因人而異,但學習的五個環(huán)節(jié):預習、上課、復習、作業(yè)、總結是少不了的。
、芏嘟涣、多反思解疑,化解分化點
多和同學交流,多向老師請教,多開展變式練習,化解分化點,以達到靈活掌握知識、運用知識的目的。
只要學習科學方法,有恒心,有信心,有拼搏心,克服急躁心里,克服“小聰明”,多交流,多反思,養(yǎng)成良好的學習習慣,就能順利度過學習適應期,就能在今后的數(shù)學成績突飛猛進。
四、學數(shù)學的幾個建議:
1、記數(shù)學筆記,特別是對概念理解的不同側(cè)面和數(shù)學規(guī)律,以及老師補充的課外知識。
2、建立數(shù)學糾錯本。
3、記憶數(shù)學規(guī)律和數(shù)學小結論。
4、與同學建立良好關系,爭做“小老師”,形成數(shù)學學習“互助組”。
5、增加數(shù)學課外閱讀,加大自學力度。
6、反復鞏固,消滅前學后忘。
7、學會總結歸類。
初一下冊數(shù)學知識點10
一、目標與要求
1、感受生活中存在著大量的不等關系,了解不等式和一元一次不等式的意義,通過解決簡單的實際問題,使學生自發(fā)地尋找不等式的解,會把不等式的解集正確地表示到數(shù)軸上;
2、經(jīng)歷由具體實例建立不等模型的過程,經(jīng)歷探究不等式解與解集的不同意義的過程,滲透數(shù)形結合思想;
3、通過對不等式、不等式解與解集的探究,引導學生在獨立思考的基礎上積極參與對數(shù)學問題的討論,培養(yǎng)他們的合作交流意識;讓學生充分體會到生活中處處有數(shù)學,并能將它們應用到生活的各個領域。
二、知識框架
三、重點
理解并掌握不等式的性質(zhì);
正確運用不等式的性質(zhì);
建立方程解決實際問題,會解"ax+b=cx+d"類型的一元一次方程;
尋找實際問題中的不等關系,建立數(shù)學模型;
一元一次不等式組的解集和解法。
四、難點
一元一次不等式組解集的理解;
弄清列不等式解決實際問題的思想方法,用去括號法解一元一次不等式;
正確理解不等式、不等式解與解集的意義,把不等式的解集正確地表示到數(shù)軸上。
五、知識點、概念總結
1、不等式:用符號"<",">","≤","≥"表示大小關系的式子叫做不等式。
2、不等式分類:不等式分為嚴格不等式與非嚴格不等式。
一般地,用純粹的大于號、小于號">","<"連接的不等式稱為嚴格不等式,用不小于號(大于或等于號)、不大于號(小于或等于號)"≥","≤"連接的不等式稱為非嚴格不等式,或稱廣義不等式。
3、不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。
4、不等式的解集:一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
5、不等式解集的表示方法:
(1)用不等式表示:一般的,一個含未知數(shù)的不等式有無數(shù)個解,其解集是一個范圍,這個范圍可用最簡單的不等式表達出來,例如:x—1≤2的解集是x≤3
。2)用數(shù)軸表示:不等式的解集可以在數(shù)軸上直觀地表示出來,形象地說明不等式有無限多個解,用數(shù)軸表示不等式的解集要注意兩點:一是定邊界線;二是定方向。
6、解不等式可遵循的一些同解原理
。1)不等式F(x)< G(x)與不等式 G(x)>F(x)同解。
。2)如果不等式F(x)< G(x)的定義域被解析式H(x)的定義域所包含,那么不等式 F(x)< G(x)與不等式H(x)+F(x)
。3)如果不等式F(x)< G(x)的定義域被解析式H(x)的定義域所包含,并且H(x)>0,那么不等式F(x)< G(x)與不等式H(x)F(x)0,那么不等式F(x)< G(x)與不等式H(x)F(x)>H(x)G(x)同解。
7、不等式的性質(zhì):
(1)如果x>y,那么yy;(對稱性)
。2)如果x>y,y>z;那么x>z;(傳遞性)
。3)如果x>y,而z為任意實數(shù)或整式,那么x+z>y+z;(加法則)
。4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz
。5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z
。6)如果x>y,m>n,那么x+m>y+n(充分不必要條件)
(7)如果x>y>0,m>n>0,那么xm>yn
(8)如果x>y>0,那么x的n次冪>y的n次冪(n為正數(shù))
8、一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。
9、解一元一次不等式的'一般順序:
。1)去分母 (運用不等式性質(zhì)2、3)
。2)去括號
(3)移項 (運用不等式性質(zhì)1)
。4)合并同類項
(5)將未知數(shù)的系數(shù)化為1 (運用不等式性質(zhì)2、3)
(6)有些時候需要在數(shù)軸上表示不等式的解集
10、 一元一次不等式與一次函數(shù)的綜合運用:
一般先求出函數(shù)表達式,再化簡不等式求解。
11、一元一次不等式組:一般地,關于同一未知數(shù)的幾個一元一次不等式合在一一起,就組成
了一個一元一次不等式組。
12、解一元一次不等式組的步驟:
。1) 求出每個不等式的解集;
。2) 求出每個不等式的解集的公共部分;(一般利用數(shù)軸)
。3) 用代數(shù)符號語言來表示公共部分。(也可以說成是下結論)
13、解不等式的訣竅
。1)大于大于取大的(大大大);
例如:X>—1,X>2 ,不等式組的解集是X>2
。2)小于小于取小的(小小。;
例如:X<—4,X<—6,不等式組的解集是X<—6
。3)大于小于交叉取中間;
。4)無公共部分分開無解了;
14、解不等式組的口訣
。1)同大取大
例如,x>2,x>3 ,不等式組的解集是X>3
(2)同小取小
例如,x<2,x<3 ,不等式組的解集是X<2
(3)大小小大中間找
例如,x<2,x>1,不等式組的解集是1
(4)大大小小不用找
例如,x<2,x>3,不等式組無解
15、應用不等式組解決實際問題的步驟
。1)審清題意
。2)設未知數(shù),根據(jù)所設未知數(shù)列出不等式組
。3)解不等式組
。4)由不等式組的解確立實際問題的解
。5)作答
16、用不等式組解決實際問題:其公共解不一定就為實際問題的解,所以需結合生活實際具體分析,最后確定結果。
初一下冊數(shù)學知識點11
二元一次方程組
1、含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程(linearequationsoftwounknowns)。
2、含有兩個未知數(shù)的兩個一次方程所組成的方程組叫做二元一次方程組。
3、二元一次方程組中兩個方程的公共解叫做二元一次方程組的解。
4、代入消元法:把二元一次方程中一個方程的一個未知數(shù)用含另一個未知數(shù)的式子表示出來,再帶入另一個方程,實現(xiàn)消元,進而求得這個二元一次方程組的解。這種方法叫做代入消元法,簡稱代入法。
5、加減消元法:當方程中兩個方程的某一未知數(shù)的系數(shù)相等或互為相反數(shù)時,把這兩個方程的兩邊相加或相減來消去這個未知數(shù),從而將二元一次方程化為一元一次方程,最后求得方程組的解,這種解方程組的方法叫做加減消元法,簡稱加減法.
6、二元一次方程組解應用題的一般步驟可概括為“審、找、列、解、答”五步,即:
(1)審:通過審題,把實際問題抽象成數(shù)學問題,分析已知數(shù)和未知數(shù),并用字母表示其中的兩個未知數(shù);
(2)找:找出能夠表示題意兩個相等關系;
(3)列:根據(jù)這兩個相等關系列出必需的代數(shù)式,從而列出方程組;
(4)解:解這個方程組,求出兩個未知數(shù)的值;
(5)答:在對求出的方程的解做出是否合理判斷的基礎上,寫出答案.
一元一次不等式
重點:不等式的性質(zhì)和一元一次不等式的解法。
難點:一元一次不等式的解法和一元一次不等式解決在現(xiàn)實情景下的實際問題。
知識點一:不等式的概念
1.不等式:
用“<”(或“≤”),“>”(或“≥”)等不等號表示大小關系的式子,叫做不等式.用“≠”表示不等關系的式子也是不等式.
要點詮釋:
(1)不等號的類型:
、佟啊佟弊x作“不等于”,它說明兩個量之間的.關系是不等的,但不能明確兩個量誰大誰小;
(2)要正確用不等式表示兩個量的不等關系,就要正確理解“非負數(shù)”、“非正數(shù)”、“不大于”、“不小于”等數(shù)學術語的含義。
2.不等式的解:
能使不等式成立的未知數(shù)的值,叫做不等式的解。
要點詮釋:
由不等式的解的定義可以知道,當對不等式中的未知數(shù)取一個數(shù),若該數(shù)使不等式成立,則這個數(shù)就是不等式的一個解,我們可以和方程的解進行對比理解,一般地,要判斷一個數(shù)是否為不等式的解,可將此數(shù)代入不等式的左邊和右邊利用不等式的概念進行判斷。
3.不等式的解集:
一般地,一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。求不等式的解集的過程叫做解不等式。如:不等式x-4<1的解集是x<5.不等式的解集與不等式的解的區(qū)別:解集是能使不等式成立的未知數(shù)的取值范圍,是所有解的集合,而不等式的解是使不等式成立的未知數(shù)的值.二者的關系是:解集包括解,所有的解組成了解集。
要點詮釋:
不等式的解集必須符合兩個條件:
(1)解集中的每一個數(shù)值都能使不等式成立;
(2)能夠使不等式成立的所有的數(shù)值都在解集中。
知識點二:不等式的基本性質(zhì)
基本性質(zhì)1:不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變。
符號語言表示為:如果,那么。
基本性質(zhì)2:不等式的兩邊都乘上(或除以)同一個正數(shù),不等號的方向不變。
符號語言表示為:如果,并且,那么(或)。
基本性質(zhì)3:不等式的兩邊都乘上(或除以)同一個負數(shù),不等號的方向改變。
符號語言表示為:如果,并且,那么(或)
初一下冊數(shù)學知識點12
1.同一平面內(nèi),兩直線不平行就相交。
2.兩條直線相交所成的四個角中,相鄰的兩個角叫做鄰補角,特點是兩個角共用一條邊,另一條邊互
為反向延長線,性質(zhì)是鄰補角互補;相對的兩個角叫做對頂角,特點是它們的兩條邊互為反向延長線。性質(zhì)是對頂角相等。
3.垂直定義:兩條直線相交所成的四個角中,如果有一個角為90度,則稱這兩條直線互相垂直。其
中一條直線叫做另外一條直線的垂線,他們的交點稱為垂足。4.垂直三要素:垂直關系,垂直記號,垂足
5.垂直公理:過一點有且只有一條直線與已知直線垂直。6.垂線段最短;
7.點到直線的距離:直線外一點到這條直線的垂線段的長度。8.兩條直線被第三條直線所截:同位角F(在兩條直線的同一旁,第三條直線的同一側(cè)),內(nèi)錯角Z(在
兩條直線內(nèi)部,位于第三條直線兩側(cè)),同旁內(nèi)角U(在兩條直線內(nèi)部,位于第三條直線同側(cè))。9.平行公理:過直線外一點有且只有一條直線與已知直線平行。
10.如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。如果b//a,c//a,那么b//cP174題
11.平行線的判定。結論:在同一平面內(nèi),如果兩條直線都垂直于同一條直線,那么這兩條直線平行。平行線的性質(zhì):
1.兩直線平行,同位角相等。2.兩直線平行,內(nèi)錯角相等。3.兩直線平行,同旁內(nèi)角互補。
12.★命題:“如果+題設,那么+結論。”
三角形和多邊形
1.三角形內(nèi)角和為180°
2.構成三角形滿足的條件:三角形兩邊之和大于第三邊。
判斷方法:在△ABC中,a、b為兩短邊,c為長邊,如果a+b>c則能構成三角形,否則(a+bc)不能構成三角形(即三角形最短的兩邊之和大于最長的邊)
3.三角形邊的取值范圍:三角形的任一邊:小于兩邊之和,大于兩邊之差(的絕對值)【重點題目】三角形的兩邊分別為3和7,則三角形的第三邊的取值范圍為4.等面積法:三角形面積1底高,三角形有三條高,也就對應有三條底邊,任取其中一組底和高,21三角形同一個面積公式就有三個表示方法,任取其中兩個寫成連等(可兩邊同時2消去)底高
2底高,知道其中三條線段就可求出第四條。例如:如圖1,在直角△ABC中,ACB=900,CD
是斜邊AB
上的高,則有ACBCCDAB
A
CB1D【重點題目】P708題例直角三角形的三邊長分別為3、4、5,則斜邊上的高為5.等高法:高相等,底之間具有一定關系(如成比例或相等)
【例】AD是△ABC的中線,AE是△ABD的中線,SABC4cm2,則SABE=6.三角形的特性:三角形具有【重點題目】P695題7.外角:
【基礎知識】什么是外角?外角定理及其推論【重點題目】P75例2P765、6、8題8.n邊形的★內(nèi)角和★外角和√對角線條數(shù)為
【基礎知識】正多邊形:各邊相等,各角相等;正n邊形每個內(nèi)角的度數(shù)為【重點題目】P83、P84練習1,2,3;P843,4,5,6;P904、5題9.√鑲嵌:圍繞一個拼接點,各圖形組成一個周角(不重疊,無空隙)。
單一正多邊形的鑲嵌:鑲嵌圖形的每個內(nèi)角能被360整除:只有6個等邊三角形(60),4個正方形(90),3個正六邊形(120)三種
。▋煞N正多邊形的)混合鑲嵌:混合鑲嵌公式nm3600:表示n個內(nèi)角度數(shù)為的正多邊形與
0000m個內(nèi)角度數(shù)為的正多邊形圍繞一個拼接點組成一個周角,即混合鑲嵌。
【例】用正三角形與正方形鋪滿地面,設在一個頂點周圍有m個正三角形、n個正方形,則m,n的值分別為多少?
平面直角坐標系
▲基本要求:在平面直角坐標系中1.給出一點,能夠?qū)懗鲈擖c坐標2.給出坐標,能夠找到該點
▲建系原則:原點、正方向、橫縱軸名稱(即x、y)
√語言描述:以…(哪一點)為原點,以…(哪一條直線)為x軸,以…(哪一條直線)為y軸建立直角坐標系
▲基本概念:有順序的兩個數(shù)組成的數(shù)對稱為(有序數(shù)對)【三大規(guī)律】1.平移規(guī)律★
點的.平移規(guī)律(P51歸納)
例將P(2,3)向左平移3個單位,向上平移5個單位得到點Q,則Q點的坐標為圖形的平移規(guī)律(P52歸納)
重點題目:P53練習;P543、4題;P557題。2.對稱規(guī)律▲
關于x軸對稱,縱坐標取相反數(shù)關于y軸對稱,橫坐標取相反數(shù)
關于原點對稱,橫、縱坐標同時取相反數(shù)
例:P點的坐標為(5,7),則P點
(1.)關于x軸對稱的點為(2.)關于y軸的對稱點為(3.)關于原點的對稱點為3.位置規(guī)律★
假設在平面直角坐標系上有一點P(a,b)y1.如果P點在第一象限,有a>0,b>0(橫、縱坐標都大于0)第二象限第一象限2.如果P點在第二象限,有a0(橫坐標小于0,縱坐標大于0)X3.如果P點在第三象限,有a5.小長方形的面積表示頻數(shù)?v軸為頻數(shù)。等距分組時,通常直接用小長方形的高表示頻數(shù),即縱
組距軸為“頻數(shù)”
6.頻數(shù)分布折線圖√根據(jù)頻數(shù)分布圖畫出頻數(shù)分布折線圖:①取每個小長方形的上邊的中點,以及x
軸上與最左、最右直方相距半個組距的點。②連線【重點題目】P1693、4題
二元一次方程組和不等式、不等式組
1.解二元一次方程組,基本的思想是;2.二元一次方程(組):含兩個未知數(shù),并且含有未知數(shù)的項的次數(shù)都是1,像這樣的方程叫做二元一次方程。把具有相同未知數(shù)的兩個二元一次方程組合起來,就組成了二元一次方程組。(具體題目見本單元測試卷填空部分)
3.★解二元一次方程組。常用的方法有和。P96、P100歸納4.★列二元一次方程組解實際問題。關鍵:找等量關系常見的類型有:分配問題P1185題;P1084、5題;P102練習3;P1048題;P1034題;追及問題P1037題、P1186題;順流逆流P102練習2;P1082題;藥物配制P1087題;行程問題P99練習4;P1083,6題順流逆流公式:v順v靜v水v逆vv靜水5.不等式的性質(zhì)(重點是性質(zhì)三)P1285、7題6.利用不等式的性質(zhì)解不等式,并把解集在數(shù)軸上表示出來(課本上的練例、習題)P1342
步驟:去分母,去括號,移項,合并同類項,系數(shù)化為一;其中去分母與系數(shù)化為一要特別小心,因為要在不等式兩端同時乘或除以某一個數(shù),要考慮不等號的方向是否發(fā)生改變的問題。7.用不等式表示,P1282題,P127練習2;P123練習28.利用數(shù)軸或口訣解不等式組(課本上的例、習題)
數(shù)軸:P140歸納口訣(簡單不等式):同大取大,同小取小,大(于)小。ㄓ冢┐笕≈虚g,大(于)大。ㄓ冢┬。獠灰娏。
9.列不等式(組)解決實際問題:P12910;P1289題;P133例2;P1355、6、7、8、9,P139例2;P140練習2,P1413、4題不等式組的解集的確定方法(a>b):自己將表格補充完整:不等式組
4
在數(shù)軸上表示的解集解集x>a口訣大大取大;x>ax>bx<ax<bx<ax>b小大大小中間找;ba小小取;x>ax<b空集大大小小不見了。
初一下冊數(shù)學知識點13
1.判斷一個方程是不是二元一次方程,一般要將方程化為一般形式后再根據(jù)定義判斷。
2.二元一次方程的解:一個二元一次方程有無數(shù)個解,而每一個解都是一對數(shù)值。求二元一次方程的解的方法:若方程中的未知數(shù)為x,y,可任取x的一些值,相應的可算出y的值,這樣,就會得到滿足需要的數(shù)對。
3.二元一次方程組:兩個二元一次方程合在一起,就組成了一個二元一次方程組。作為二元一次方程組的兩個方程,不一定都含有兩個未知數(shù),可以其中一個是一元一次方程,另一個是二元一次方程。
4.二元一次方程組的`解:使二元一次方程組的兩個方程左右兩邊的值都相等的兩個未知數(shù)的值,叫做二元一次方程組的解。檢驗一對數(shù)值是不是二元一次方程組的解的方法是,將兩個未知數(shù)分別代入方程組中的兩個方程,如果都能滿足這兩個方程,那么它就是方程組的解。
初一下冊數(shù)學知識點14
1、單項式:數(shù)字與字母的積,叫做單項式。
2、多項式:幾個單項式的和,叫做多項式。
3、整式:單項式和多項式統(tǒng)稱整式。
4、單項式的次數(shù):單項式中所有字母的指數(shù)的和叫單項式的次數(shù)。
5、多項式的次數(shù):多項式中次數(shù)的項的次數(shù),就是這個多項式的次數(shù)。
6、余角:兩個角的和為90度,這兩個角叫做互為余角。
7、補角:兩個角的和為180度,這兩個角叫做互為補角。
8、對頂角:兩個角有一個公共頂點,其中一個角的兩邊是另一個角兩邊的反向延長線。這兩個角就是對頂角。
9、同位角:在“三線八角”中,位置相同的角,就是同位角。
10、內(nèi)錯角:在“三線八角”中,夾在兩直線內(nèi),位置錯開的.角,就是內(nèi)錯角。
11、同旁內(nèi)角:在“三線八角”中,夾在兩直線內(nèi),在第三條直線同旁的角,就是同旁內(nèi)角。
12、有效數(shù)字:一個近似數(shù),從左邊第一個不為0的數(shù)開始,到精確的那位止,所有的數(shù)字都是有效數(shù)字。
13、概率:一個事件發(fā)生的可能性的大小,就是這個事件發(fā)生的概率。
14、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
15、三角形的角平分線:在三角形中,一個內(nèi)角的角平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線。
16、三角形的中線:在三角形中連接一個頂點與它的對邊中點的線段,叫做這個三角形的中線。
17、三角形的高線:從一個三角形的一個頂點向它的對邊所在的直線作垂線,頂點和垂足之間的線段叫做三角形的高線(簡稱三角形的高)。
18、全等圖形:兩個能夠重合的圖形稱為全等圖形。
19、變量:變化的數(shù)量,就叫變量。
20、自變量:在變化的量中主動發(fā)生變化的,變叫自變量。
21、因變量:隨著自變量變化而被動發(fā)生變化的量,叫因變量。
22、軸對稱圖形:如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形。
23、對稱軸:軸對稱圖形中對折的直線叫做對稱軸。
24、垂直平分線:線段是軸對稱圖形,它的一條對稱軸垂直于這條線段并且平分它,這樣的直線叫做這條線段的垂直平分線。(簡稱中垂線)
初一下冊數(shù)學知識點15
單項式乘法法則:單項式相乘,把它們的系數(shù)、相同字母分別相乘,對于只在一個單項式里含有的字母,連同它的指數(shù)作為積的一個因式。
單項式乘法法則在運用時要注意以下幾點:
、俜e的'系數(shù)等于各因式系數(shù)積,先確定符號,再計算絕對值。這時容易出現(xiàn)的錯誤的是,將系數(shù)相乘與指數(shù)相加混淆;
、谙嗤帜赶喑,運用同底數(shù)的乘法法則;
③只在一個單項式里含有的字母,要連同它的指數(shù)作為積的一個因式;
、軉雾検匠朔ǚ▌t對于三個以上的單項式相乘同樣適用;
、輪雾検匠艘詥雾検,結果仍是一個單項式。
【初一下冊數(shù)學知識點】相關文章:
初一數(shù)學下冊知識點總結11-29
初一下冊數(shù)學必備知識點02-14
初一數(shù)學下冊重點知識點總結02-17
初一下冊數(shù)學知識點08-07
初一下冊數(shù)學考試知識點06-27
【精選】初一下冊數(shù)學知識點匯總07-30
初一下冊數(shù)學知識點匯總07-19
初一下冊數(shù)學知識點歸納12-17
初一語文下冊知識點10-18